

Copyright © 2005 by Thermo Electron Corporation, Madison WI 53711.
Printed in the United States of America. All world rights reserved.

The information in this publication is provided for reference only. All information contained in
this publication is believed to be correct and complete. Thermo Electron Corporation shall not
be liable for errors contained herein nor for incidental or consequential damages in connection
with the furnishing, performance or use of this material. All product specifications, as well as
the information contained in this publication, are subject to change without notice.

This publication may contain or reference information and products protected by copyrights or
patents and does not convey any license under the patent rights of Thermo Electron
Corporation, nor the rights of others. Thermo Electron Corporation does not assume any
liability arising out of any infringements of patents or other rights of third parties.

Thermo Electron Corporation makes no warranty of any kind with regard to this material,
including but not limited to the implied warranties of merchantability and fitness for a particular
purpose. Customers are ultimately responsible for validation of their systems.

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any
way, including but not limited to photocopy, photograph, magnetic or other record, without the
prior written permission of Thermo Electron Corporation.

For technical assistance, please contact:
Technical Support
Thermo Electron Corporation
5225 Verona Road
Madison WI 53711-4495
U.S.A.

Telephone: 1 800 642 6538 (U.S.A.) or +1 608 273 5015 (worldwide)
Fax: +1 608 273 5045 (worldwide)
E-mail: techsupport.analyze@thermo.com

Macros\Pro, Atlµs, and QuantPad are trademarks and OMNIC, Nexus, and Magna-IR are
registered trademarks of Thermo Electron Scientific Instruments Corporation, a subsidiary of
Thermo Electron Corporation.
Microsoft, Windows, Excel and Visual Basic are either trademarks or registered trademarks of
Microsoft Corporation in the United States and/or other countries.
Turbo Pascal is a registered trademark of Borland International.
SmartPad is a registered trademark of Softblox corporation.

269-043706

Contents

Introduction...1

About Macros\Pro ..2
About this manual ..4
Referencing type libraries ..5

Referencing type libraries with Visual Basic 6.06
Referencing type libraries with Visual Basic.NET8

Creating Macros With Visual Basic ...11
Creating pro macros with Visual Basic 6.0..................................12
Creating pro macros with Visual Basic.NET...............................22

Using a Pro Macro in OMNIC..33
Adding a macro to an OMNIC menu ...33
Adding a macro to the OMNIC toolbar36
Calling a Pro macro from Macros\Basic40
Using Pro macros in Macros\Basic loops42

Using the OmTalk Routines ...43
Adding OmTalk to Visual Basic 6.0 projects44
Troubleshooting when using OmTalk..45
Types of OmTalk routines..46

OMNIC program control routines ...46
Parameter control routines...46
Command execution routines ..46
Error handling routines..47
Basic macro interaction routines ...47
Data array routines...47

List of OmTalk routines ...48
Using the OmTalk.NET Routines...81

Adding OmTalk to Visual Basic.NET projects............................82
Types of OmTalk.NET routines...83

OMNIC program control routines ...83
Parameter control routines...83
Command execution routines ..83
Error handling routines..84

Data array routines...84
List of OmTalk.NET routines ..85

The OMNIC DDE Application...113
General features..114

Parameters (group, parameter and value)115
Commands (commands and keywords)116
Command buttons ..121
Other functions ..122

Messages ..123
OMNIC Commands and Parameters ..125

Syntax rules ..127
Bench and Collect parameters for step- scan experiments.........130

Macros\Pro Examples ...131
Visual Basic example 1: EASY1.VBP.......................................132
Visual Basic example 2: EASY2.VBP.......................................133
Visual Basic example 3: EASY3.VBP.......................................134
Visual Basic example 4: COMMAND.VBP..............................135
Visual Basic example 5: CONTROL.VBP136
Visual Basic example 6: XYPEAK.VBP...................................138
Visual Basic example 7: GetData.VBP......................................139
Visual Basic example 8: LIBRARY.VBP..................................140
Visual Basic example 9: RAMANLIB.VBP..............................141
Visual Basic example 10: RATIO.VBP.....................................142
Visual Basic example 11: SST.VBP ..143
Visual Basic example 12: ZPDHOLD.VBP...............................144
Using OMNIC QuantPad DDE commands and parameters

Accessing report information
......145

..145
Using Commands and Parameters With Other Applications..........147

Dynamic data exchange basics...148
..150 Syntax rules for DDE conversations

Index ...153

Introduction

Macros\Pro™ is an advanced macros development package for
OMNIC® that is easy to use but powerful enough to let you develop
macros that will perform complex operations. The components of
Macros\Pro include:

• OMNIC commands and parameters. The operations a macro

performs are specified with commands and parameters. Any
operation available in OMNIC can be performed using
commands and parameters.

• OmTalk routines that manage the communications between

OMNIC and Visual Basic®. These routines allow you to execute
OMNIC commands, set and read OMNIC parameter values, and
perform a number of other interactions between OMNIC and
Visual Basic.

• The Visual Basic programming software. With Visual Basic you

can create sophisticated user interfaces and program your macros
to perform a wide variety of operations.

On-line help
for Macros\Pro

To use the on-line help system for Macros\Pro, click the Windows®
Start menu, point to Programs, and then point to the OMNIC folder.
This opens a menu of the components of OMNIC you have installed.
Click OMNIC Macros\Pro Help to open the Macros\Pro help system.

Macros\Pro User’s Guide 1

About Macros\Pro Macros\Pro version 6.1a and greater is designed to work with Visual
Basic 6.0 and Visual Basic.NET. Here are some things you should
keep in mind when using Visual Basic.

• If you are using Visual basic version 6.0 with Macros\Pro

version 6.1a and greater, the OmTalk files OMTALK.FRM and
OMTALK.BAS support compilation for 32-bit applications. This
occurs automatically; you do not have to do anything other than
add these two files to your project.

• If you are using Visual Basic.NET with Macros\Pro version 6.1a

and greater, the OmTalk file OMTALK32.VB supports
compilation for 32-bit applications. This occurs automatically;
you do not have to do anything other than add this file to your
project.

 Note You can use Visual Basic 6.0 with OmTalk.NET. To do so, use
the OMTALK.EXE and OMTALK32.BAS files and follow the
instructions for OmTalk.NET.

• Example macros that you can look at using Visual Basic are

included with the Macros\Pro software. These examples are in a
folder within the OMNIC\PROMACS\EXAMPLES directory.
(If you have Visual Basic 6.0, you can use the Visual Basic 5.0
examples.)

 Note If you are using Visual Basic 3.0 or earlier, you must use the 16-
bit versions of the OmTalk files, OMTALK16.FRM and
OMTALK16.BAS. When creating a new Visual Basic 3.0
project, be sure to add the OMTALK16 files to your project, not
the OMTALK files. If you are working with an existing
application, you must remove the OMTALK files, and then add
the OMTALK16 files to your project.

 Note Visual Basic.net is used to refer to Visual Basic under various

names, including Visual Basic.net, Visual Basic.net 2003, Visual
Basic 2005, or other future Microsoft product names. It is
currently available only as a component of Visual Studio.

2 Thermo Nicolet

• If you are using a 32-bit version of Visual Basic, you must add
the OmnicCom 1.0 Type Library to your project before
attempting to make an .exe file. If you do not, and you are using
Visual Basic 6.0, you will get an error message. (For more
information, see “Referencing type libraries” in this chapter.)

• If you are using a Visual Basic.NET, you must add the
OmTalk.NET 1.0 Type Library to your project before attempting
to make an .exe file. If you do not, you will get a build error.
(For more information, see “Referencing type libraries” in this
chapter.)

Macros\Pro User’s Guide 3

About this manual This manual is divided into the following chapters:

• Creating Pro Macros With Visual Basic
 Provides information about creating Pro macros using Visual

Basic and OmTalk.

• Using a Pro Macro in OMNIC
 Describes how to run your Pro macros from OMNIC, using

menu commands or buttons.

• Using the OmTalk Visual Basic Routines
 Explains how to use the OmTalk routines to handle

communications between Visual Basic and OmTalk. A detailed
description of each OmTalk routine is provided.

• The OMNIC DDE Application
 Provides information on the stand-alone application for sending

commands to OMNIC and for setting and getting the values of
OMNIC parameters via dynamic data exchange (DDE).

• OMNIC Commands and Parameters
 Provides information about using the OMNIC commands and

parameters.

• Macros\Pro Examples
 Provides brief descriptions of the content and purpose of each of

the example macros provided with your Macros\Pro software.

• Using OMNIC Commands and Parameters with Other
Applications

 Provides information on using the OMNIC commands and
parameters with applications other than Visual Basic.

 Note You will need to know how to program in Visual Basic before you

can create Pro macros. For information about programming in
Visual basic, see the Visual Basic documentation and tutorial.

4 Thermo Nicolet

Referencing
type libraries

Pro macros that you create or run with OMNIC 5.1 or higher must
reference the OmnicCom 1.0 Type Library (and the OmTalk.NET
Type Library if you are using Visual Basic.NET). If you do not add
the OmnicCom 1.0 Type Library to a Visual Basic 6.0 project, you
will get the following error message:

If you are using Visual Basic.NET, and you do not add the
OmTalk.NET Type Library to your project, you will get the
following build error:

“Type 'OmTalk.OmTalkClass' is not defined.”

The procedures that follow explain how to reference the appropriate
type libraries in a Pro macro (or to update an existing Pro macro to
run with OMNIC 5.1 or higher) when you are using Macros\Pro
version 6.1 or greater.

Macros\Pro User’s Guide 5

Referencing type libraries
with Visual Basic 6.0

To reference the OmnicCom 1.0 Type Library when using Visual
Basic 6.0, follow these steps:

1. Start Visual Basic.

2. Create or open the macro you want to update.

3. Choose References from the Project menu.

 The References dialog box appears on the display.

4. Turn on the check box for OmnicCom 1.0 Type Library in

the Available References list.

6 Thermo Nicolet

5. Click OK to close the References dialog box.

6. Use the Save Project command in the Visual Basic File menu

to save the macro.

7. Use the Make command in the Visual Basic File menu to

create an executable (.EXE) file for your macro.

Macros\Pro User’s Guide 7

Referencing type libraries
with Visual Basic.NET

To reference the OmnicCom 1.0 Type Library and OmTalk.NET
library when using Visual Basic.NET, follow these steps:

1. Start Visual Basic.NET.

2. Create or open the macro you want to update.

3. Choose Add Reference from the Project menu.

 The Add Reference dialog box appears on the display.

4. Click the COM tab, from the list of available references,

select OmnicCom 1.0 Type Library and click Select, and then
select OmTalk.NET and click Select.

8 Thermo Nicolet

5. Click OK to close the References dialog box.

6. Use the Save All command in the File menu to save the

macro.

7. Use the Build Solution command in the Build menu to create

an executable (.EXE) file for your macro.

Macros\Pro User’s Guide 9

.

10 Thermo Nicolet

Creating Macros With Visual Basic

Once you are familiar with creating Visual Basic applications, you
can use Visual Basic to create Pro macros. If you have not
programmed with Visual Basic before, you should become familiar
with it before continuing. The on-line Help system included with the
Visual Basic software provides a good overview of the process for
creating Visual Basic applications.

The OmTalk routines can be used within your Visual Basic
application to pass information such as command instructions,
parameter settings and spectral data between Visual Basic and
OMNIC. These routines handle the communication between Visual
Basic and OMNIC so that you don’t have to program the interactions
between the two applications. For a more complete description of the
OmTalk routines, see “Using the OmTalk Visual Basic Routines”
chapter of this manual.

Pro macros are created using the same basic steps you would use for
creating any Visual Basic application. The following procedure
leads you through creating the interface, incorporating the OmTalk
routines, and writing the code for the example macro EASY1.VBP.

To view the completed EASY1.VBP form and associated code, open
the EASY1.VBP project in Visual Basic. If you have already
installed the Macros\Pro software, EASY1.VBP is located in the
OMNIC\PROMACS\EXAMPLES\VB#\EASY1 directory on your
hard disk, where VB# corresponds to the version number of Visual
Basic you are using.

 Note If you are using Visual Basic 3.0, the example file is named
EASY1.MAK.

Macros\Pro User’s Guide 11

Creating pro macros
with Visual Basic 6.0

This example shows how to create a Pro macro with Visual Basic
6.0 and OmTalk. If you’re using an earlier version of Visual Basic,
the same directions apply in general. If you’re using Visual
Basic.NET with OmTalk.NET, an applicable example follows this
example.

1. Start Visual Basic.

Use the Start button to go to the Visual Basic folder, and then
click the Visual Basic program name. You can also use Explorer
to find and click the Visual Basic program file.

2. Create a new project.

 If the New Project window (see illustration below) does not

appear, display it by choosing New Project from the File menu.
Then click the Standard EXE icon and click Open. Visual Basic
creates a new project with a Form window as shown below. You
use the Form window to create the controls you want your users
to see.

12 Thermo Nicolet

3. Select the Command Button tool and create the first of two
buttons in this example macro.

 Click the Command Button tool once. Then go to the Form

window and drag with the mouse to create the button.

Command Button tool

Macros\Pro User’s Guide 13

4. Define the button name or caption.

Display the button Properties window if it is not already shown.
(Right-click the button and choose Properties from the drop-
down menu.) If you display the Properties window immediately
after creating a button, the Caption field will be selected
automatically.

With the current caption highlighted, type the name “Open
Spectra.” Click the Close button to close the Properties window.
The new name appears on the button. You can use the Properties
window to quickly change a button caption or any other button
property at any time.

5. Repeat the previous steps to create another button with the

caption “Exit”.

14 Thermo Nicolet

6. Add the OMTALK.FRM and OMTALK.BAS files to your
project.

These files must be included in the project in order to use the
OmTalk commands. If you are using Visual Basic 3, you must
use the 16-bit versions of these files (OMTALK16.FRM and
OMTALK16.BAS).

 To add the OMTALK.FRM file to your project, choose Add Form

from the Project menu. In the Add Form window, click the
Existing tab and open the file OMTALK.FRM (or
OMTALK16.FRM) from the PROMACS directory of your
OMNIC data directory. Click OK when the following message
appears.

“This file was saved in a previous version of Visual Basic. When
saved, it will be saved in the Visual Basic 5.0 format.”

 To add the OMTALK.BAS file to your project, choose Add

Module from the Project menu. In the Add Module window,
click the Existing tab and open the file OMTALK.BAS (or
OMTALK16.BAS) from the PROMACS directory of your
OMNIC data directory.

 Verify that the files are loaded by checking for the OmTalk files

in the Project window as shown below.

View Objects button

Macros\Pro User’s Guide 15

7. Add the OmnicCom 1.0 Type Library reference to your
project.

 From the Visual Basic Project menu, choose References.

 The References dialog box appears on the display.

 Scroll the list of available references until the OmnicCom 1.0

Type Library check box is displayed and then turn on the check
box as shown in the following illustration.

 Click OK to close the dialog box.

16 Thermo Nicolet

8. Write the code for the form.

The form and each object on the form can have associated code.
To open the Code window for the form, double-click a blank
area in the Form window (don’t click one of your buttons).

Visual Basic begins some of the coding for you by entering the
start and end of the sections. Complete the code as shown below.
Lines beginning with a single apostrophe (') are comments and
may be omitted.

Private Sub Form_Load()
'Load OMTALK services and maximize OMNIC application
'window.
 Load OMTALK
 ExecuteOMNIC "MaximizeWindow"
End Sub

 Note Refer to “Using the OmTalk Visual Basic Routines” chapter for

information about specific OmTalk routines. Refer to the
Macros\Pro on-line help for a complete list of the OMNIC
commands and parameters and for information on the command
and parameter syntax.

Macros\Pro User’s Guide 17

9. Write the code for the OpenSpectra button.

 Double-click the Open Spectra button on the form to display the

Code window for the button. If the form is hidden, use the View
Objects button on the Project Window toolbar to display it.

Enter the code for the button as shown below.

Private Sub OpenSpectra_Click()
Dim CmdStr As String
Dim lvOMNICDataDir As String
Dim lvOMNICName As String
Dim lvEZOMNICName As String
Const lcSPECTRA = "spectra\"
Const lcSPA = ".spa"

'This is a very simple example using the OMTALK DDE
subroutines.
'Size the OMNIC window and move it to the upper left
corner of the screen.
'Open a new spectral window.
 ExecuteOMNIC "SizeWindow 400 480"
 ExecuteOMNIC "MoveWindow 0 0"
 ExecuteOMNIC "NewWindow"
'Set the number of panes to two.
 SetOMNIC "Display Panes", 2
'Set the display to the stack mode.
 SetOMNIC "Display Mode", "Stackmode"
'Find out where OMNIC Data Dir is.
Call FindOMNICData(lvOMNICDataDir, lvOMNICName,
lvEZOMNICName)
lvOMNICDataDir$ = lvOMNICDataDir$ & "\"
'Open two of the standard example spectra and
'place them in the new spectral window.
 CmdStr$ = """" & lvOMNICDataDir$ & lcSPECTRA &
"fsd" & lcSPA & """"
 ExecuteOMNIC "Import " & CmdStr$
 CmdStr$ = """" & lvOMNICDataDir$ & lcSPECTRA &
"fsd" & lcSPA & """"
 ExecuteOMNIC "Import " & CmdStr$
'Bring Form1 to the front.
 Form1.Show

End Sub

 Note Lines that begin with a single apostrophe (') are comments and may

be omitted from your code.

18 Thermo Nicolet

10. Write the code for the Exit button.

 Double-click the Exit button on the form to display the code

window for that button. If the form is hidden, use the View
Objects button on the Project Window toolbar to display it.

Private Sub Exit_Click ()

'Exit Visual Basic Program
 End

End Sub

 You can learn more about the Macros\Pro commands and

parameters used in this example by referring to the command
and parameter descriptions in the Macros\Pro on-line help.

11. Set the location of the form on the screen.

From the View menu, choose Form Layout Window.

The Form Layout window appears with a box that represents
your macro.

Drag the box in the Form Layout Window to set the location of
the form on the screen when your Pro macro is running.

Macros\Pro User’s Guide 19

12. Save the project.

Use the Save Project command in the File menu to save the
project. We recommend using the same name for all of the files,
forms and modules associated with a project.

13. Test the project.

 You should test a new project before saving it as an executable

(.EXE) file. To test the project, choose Start from the Visual
Basic Run menu. The project will open and run as if you had
already made the executable. If the project works as you
intended and there are no error messages, you are ready to create
the executable version of your project. Choose End from the Run
menu to stop the test.

14. Create an executable file.

Use the Make command in the File menu to create an executable
(.EXE) file for your application.

20 Thermo Nicolet

15. Run the Pro macro .EXE file.

 You can use any of the following methods to run a Pro macro.

• To run a Pro macro from OMNIC, you must first add the
macro to an OMNIC menu or the OMNIC toolbar. For more
information, see the chapter in this manual titled “Using a
Pro Macro in OMNIC.”

• If you purchased the OMNIC Macros\Basic software, you
can insert a Pro macro into a Basic macro using the Macro
command in the Macros\Basic Insert menu. For more
information, see the chapter in this manual titled “Using a
Pro Macro in OMNIC.”

• To run a Pro macro from Microsoft® Windows, open the
Windows Start menu, choose the Run command and specify
the .EXE file to be run. You can also run an executable
program from Windows Explorer or My Computer by
double-clicking the icon for the executable file. For more
information on running programs from Windows, see your
Windows documentation.

Macros\Pro User’s Guide 21

Creating pro macros
with Visual Basic.NET

This example shows how to create a Pro macro with Visual
Basic.NET and OmTalk.NET. If you’re using Visual Basic 6.0 (or
earlier) refer to the previous example.

1. Start Visual Basic.

2. Create a new project.

 Choose New Project form the File menu. When the New Project

dialog box opens, select Visual Basic Projects, and click
Windows Application. Enter a name for the project in the Name
box and choose a location for the project from the Location
drop-down list box.

22 Thermo Nicolet

3. Open the Toolbox, select the Button tool, and create the first
of two buttons in this example macro.

 Click the Button tool. Then go to the Form window and drag

with the mouse to create the button.

Macros\Pro User’s Guide 23

4. Define the button name or caption.

Display the button Properties window if it is not already shown.
(Right-click the button and choose Properties from the drop-
down menu.) If you display the Properties window immediately
after creating a button, the Caption field will be selected
automatically.

With the current caption highlighted, type the name “Open
Spectra.” When you close the Properties window, the new name
appears on the button. You can use the Properties window to
quickly change a button caption or any other button property at
any time.

5. Repeat the steps 3 and 4 to create another button with the

caption “Exit”.

24 Thermo Nicolet

6. Add the OMTALK32.VB file to your project.

These files must be included in the project in order to use the
OmTalk commands.

 To add the OMTALK32.VB file to your project, choose Add

Existing Item from the Project menu. In the Add Existing Item
dialog box open the OMTALK32.VB file from the PROMACS
directory of your OMNIC data directory.

 Verify that the files are loaded by checking for the OmTalk files

in the Project window as shown below.

Macros\Pro User’s Guide 25

7. Add references to your project.

 Choose Add Reference from the Visual Basic Project menu, and

then click the COM tab in the Add Reference dialog box. Select
OmTalk.NET 1.0 Type Library from the list of available
references and click Select.

 Click OK to close the dialog box.

26 Thermo Nicolet

8. Write the code for the form.

The form and each object on the form can have associated code.
To view the code for the form, double-click a blank area in the
form window.

Visual Basic.NET begins some of the coding for you by entering
the start and end of the sections. Complete the code as shown
below.

Private Sub Form_Load ()
 LoadOmTalk()
 ExecuteOMNIC ("MaximizeWindow")
End Sub

 Note Refer to the “Using the OmTalk.NET Visual Basic Routines”

chapter for information about the OmTalk routines. Refer to the
Macros\Pro on-line help for information about OMNIC
commands and parameters.

Macros\Pro User’s Guide 27

9. Write the code for the OpenSpectra button.

 Double-click the Open Spectra button on the form to display the

code for the button. If the form is hidden, choose Designer from
the View menu to display it.

Enter the code for the button as shown below.

Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
Handles Button1.Click

 Dim CmdStr As String
 Dim fvOMNICDataDir As String
 Dim fvOMNICName As String
 Dim fvEZOMNICName As String
 Const lcSPECTRA = "spectra\"
 Const lcSPA = ".spa"

 'This is a very simple example using the OMTALK
 DDE subroutines.
 'Size the OMNIC window and move it to the upper
 left corner of the screen.
 'Open a new spectral window.
 ExecuteOMNIC("SizeWindow 400 480")
 ExecuteOMNIC("MoveWindow 0 0")
 ExecuteOMNIC("NewWindow")
 'Set the number of panes to two.
 SetOMNIC("Display Panes", 2)
 'Set the display to the stack mode.
 SetOMNIC("Display Mode", "Stackmode")
 'Find out where OMNIC Data Dir is.
 Call FindOMNICData(fvOMNICDataDir, fvOMNICName,
 fvEZOMNICName)
 fvOMNICDataDir$ = fvOMNICDataDir$ & "\"
 'Open two of the standard example spectra and
 'place them in the new spectral window.
 CmdStr$ = """" & fvOMNICDataDir$ & lcSPECTRA &
 "fsd" & lcSPA & """"
 ExecuteOMNIC("Import " & CmdStr$)
 CmdStr$ = """" & fvOMNICDataDir$ & lcSPECTRA &
 "fsd" & lcSPA & """"
 ExecuteOMNIC("Import " & CmdStr$)
End Sub

28 Thermo Nicolet

10. Write the code for the Exit button.

 Double-click the Exit button on the form to display the code

window for that button. If the form is hidden, choose Designer
from the View menu to display it.

Private Sub Exit_Click()
 UnloadOmTalk()
 'Exit Visual Basic Program
 End

End Sub

 Note For information about the OMNIC commands and parameters, see

the Macros\Pro on-line help.

11. Save the project.

Choose Save All from the File menu to save the project. We
recommend using the same name for all of the files, forms and
modules associated with a project.

Macros\Pro User’s Guide 29

12. Build the project.

 Choose “Build Easy 1” from the Build menu. The Output dialog

box will display a message telling you if the build succeeded.

13. Test the project.

 You should test a new project before saving it as an executable

(.EXE) file. To test the project, choose Start from the Debug
menu. The project will open and run as if you had already made
the executable. If the project works as you intended and there are
no error messages, you are ready to create the executable version
of your project.

30 Thermo Nicolet

14. Create an executable file.

Choose Configuration Manager from the Build menu, and set
Active Solution Configuration to Release. Next, use the Rebuild
command in the Build menu to create the executable.

15. Run the Pro macro .EXE file.

 You can use any of the following methods to run a Pro macro.

• To run a Pro macro from OMNIC, you must first add the
macro to an OMNIC menu or the OMNIC toolbar. For more
information, see the chapter in this manual titled “Using a
Pro Macro in OMNIC.”

• If you purchased the OMNIC Macros\Basic software, you
can insert a Pro macro into a Basic macro using the Macro
command in the Macros\Basic Insert menu. For more
information, see the chapter in this manual titled “Using a
Pro Macro in OMNIC.”

• To run a Pro macro from Microsoft® Windows, open the
Windows Start menu, choose the Run command and specify
the .EXE file to be run. You can also run an executable
program from Windows Explorer or My Computer by
double-clicking the icon for the executable file. For more
information on running programs from Windows, see your
Windows documentation.

Macros\Pro User’s Guide 31

.

32 Thermo Nicolet

Using a Pro Macro in OMNIC

There are three ways to execute Pro macros directly from OMNIC:
you can add a macro to an OMNIC menu or the OMNIC toolbar, or
you can call the macro from the Macros\Basic program. This chapter
provides step-by-step instructions for each method.

Adding a macro to
an OMNIC menu

The Edit Menu command in the OMNIC Edit menu allows you to
customize the menus by adding macro commands. To assign a macro
to an OMNIC menu, follow these steps:

1. In OMNIC, choose Edit Menu from the Edit menu.

 The Edit Menu dialog box lists every item in each OMNIC menu

and the current state of each item.

Macros\Pro User’s Guide 33

2. Choose Add Item to add the macro to the menus.

 The Menu Item dialog box appears.

3. Select Run External Program in the Item Type box.

4. Enter the pathname of the Pro macro executable file.

 Type the complete pathname of your Pro macro (.EXE) file in

the Program Pathname box. You can also use the Browse button
to locate and select a macro.

5. Enter the menu information.

 Select from the Menu drop-down list the menu to which you

want the item added, and then type in the Menu Text box the
name of the macro exactly as you want it to appear in the menu.
If you want to define a letter for choosing the command using
keyboard, place the “&” character immediately before the
desired letter in the command name. For example, to use the “N”
in the macro name “Noise Macro,” type “&Noise Macro” in the
text box.

34 Thermo Nicolet

6. Click OK to close the Menu Item dialog box, and then click
OK to close the Edit Menu dialog box.

7. If you disabled or hid the Save Configuration As command

and want to save your changes, click the Save button.

(You will not be able to save your changes after closing the Edit
Menu dialog box in this case.) The Save Configuration dialog
box appears. This is the same dialog box that appears when you
choose Save Configuration As from the File menu. For
instructions on using the dialog box, see “How to save a
configuration” in the “File” chapter of the OMNIC User’s Guide.

8. When you are finished adding your Pro macro(s) to OMNIC

menus, choose OK.

To save your menu changes, use Save Configuration As in the
File menu (if it is available). You will be prompted to save your
changes when you exit OMNIC.

Macros\Pro User’s Guide 35

Adding a macro to
the OMNIC toolbar

The Edit Toolbar command in the OMNIC Edit menu allows you to
customize the toolbar by adding buttons to initiate Pro macros. To
assign a Pro macro to the OMNIC toolbar, follow these steps:

1. In OMNIC, choose Edit Toolbar from the Edit menu.

 The Edit Toolbar dialog box appears showing the standard

button library and the current toolbar.

36 Thermo Nicolet

2. Choose Add Item to add the macro to the toolbar.

 The Add Toolbar Item dialog box appears.

3. Select Run External Program in the Item Type box.

4. Enter the pathname of the Pro macro executable file.

 Type the complete pathname of your Pro macro (.EXE) file in

the Program Pathname box. You can also click the Browse
button to display a dialog box that allows you to select a macro.

Macros\Pro User’s Guide 37

5. Enter the button name and icon information.

 In the Item Name text box type the name you want to assign to

the new button. Once the button is added to the toolbar, you can
point to the button momentarily to display its assigned name. A
default icon for the button appears in the Icon/Bitmap box. To
select another icon for the new button, click the Browse button in
the Icon/Bitmap box. A dialog box appears allowing you to
select a file that contains a bitmap or icon image (if you have
them on your system). When you select a file, the image it
contains appears as a button. When you are finished selecting a
file, click OK. The new button appears in the Icon/Bitmap box.

6. Click OK to close the Add Toolbar Item dialog box.

7. Drag the new button from the User Item box to the desired

location in the current toolbar.

8. Click OK to close the Edit Toolbar dialog box.

38 Thermo Nicolet

9. If you turned on Hide All OMNIC Menus and want to save
your toolbar in a configuration file, use the Save button.

You will not be able to use Save Configuration As in the File
menu to do this, since the menu will not be available. The setting
of Hide All OMNIC Menus will also be saved in the
configuration. In the Save Configuration dialog box enter a
filename for the configuration and then choose Save. Do not turn
on Set As Default Configuration when you save the
configuration.

 Note If you have the Val-Q DS™ software, you may be prompted to

digitally sign a file during this step. Follow the instructions that
appear on the screen. If you are not prompted but want to sign the
file, turn on the Use Digital Signature in the Save Configuration
dialog box.

10. When you are finished adding a macro to the toolbar, choose

OK.

To save your toolbar changes, use Save Configuration As in the
File menu.

Macros\Pro User’s Guide 39

Calling a Pro macro
from Macros\Basic

You can add Pro macros to a Basic macro by using the Macro
command in the Insert menu of the optional Macros\Basic software.
If you add an executable file to a Macros\Basic macro, the OMNIC
Macros application (either Macros\Basic or Macro Panel) will
suspend execution of the calling macro until the executable file
finishes or tells OMNIC Macros to resume. For more information,
see the OMNIC Macros\Basic User’s Guide.

Follow these steps to add a Pro macro to a Macros\Basic macro:

1. Start the Macros\Basic application.

See your Macros\Basic documentation for instructions.

2. Position the insertion point where you want to add the

macro.

3. Choose Macro from the Insert menu.

 The Macro dialog box appears.

40 Thermo Nicolet

4. Enter the name of the macro.

Type the name of the Pro macro in the File Name box, or use the
Browse button to display a dialog box that lets you select the
macro.

5. Select the file type.

 Select Executable in the File Type box to run a Pro macro.

 You can also append a command line argument containing

values you want to send to the Pro macro that has been called.
For example, you could call the executable file “run.exe” and
append the command line argument “abc.txt”. This would be the
same as using the Windows Run command to execute the file
“abc.txt”.

6. Verify the pathname of the macro to use, and then click OK.

Macros\Pro User’s Guide 41

Using Pro macros in
Macros\Basic loops

A Macros\Basic macro will start your Visual Basic application when
it executes a Pro macro task in the macro task sequence. If your
application is already running, the Macros\Basic macro will tell your
Visual Basic application to run the Form_Load procedure in your
startup form. The Form_Load procedure should carry out any
initialization tasks you want to occur each time your application is
run.

You can use the GetArgStr OmTalk routine to determine whether or
not the application is being run again from the Macros\Basic macro.
The GetArgStr routine returns the string “rerun” when your
application is being run again by Macros\Basic. (For more
information, see the “Using the OmTalk Visual Basic Routines”
chapter in the this manual.)

42 Thermo Nicolet

Using the OmTalk Routines

OmTalk is a set of Visual Basic routines designed to simplify the
development of macros using Visual Basic and the OMNIC commands
and parameters. The OmTalk routines handle the communications
between Visual Basic and OMNIC so that you don’t have to program
the interactions between the two applications.

The OmTalk routines are included on the Macros\Pro software disk
in two files: OMTALK.FRM and OMTALK.BAS. OMTALK.FRM
contains a text box control that handles the communications.
OMTALK.BAS contains the code for the OmTalk routines.

 Note The OMTALK16.FRM and OMTALK16.BAS files are also included
for use with Visual Basic 3.0. If you are running Visual Basic 3.0, you
must use these files because Visual Basic 3.0 does not recognize files
that are in Visual Basic 4.0 format. The contents of the OMTALK16
and OMTALK files are identical; only the file formats are different.

The OmTalk routines are listed in the Macros\Pro on-line help
system and include the following:

EndOMNIC GetItem Pop
ErrMsgBox GetMVVal ResumeMacro
ErrOMNIC GetOMNIC SetApp
ExecuteApp GetOMNICName SetDataArray
ExecuteOMNIC GetOMNICVersion SetMVVal
FindOMNICData GetSpecCollectTime SetOMNIC
GetApp GetSpecData SetSpecData
GetArgStr GetVal StartOMNIC
GetDataArray ItemCount Strip

Macros\Pro User’s Guide 43

Adding OmTalk
to Visual Basic 6.0

projects

In order to use OmTalk in your Visual Basic 6.0 projects, you need
to do several things. First, since the OmTalk routines handle the
DDE communications between OMNIC and Visual Basic, you must
include the OmTalk files (OMTALK.FRM and OMTALK.BAS) in
each Visual Basic project you create. To add the OmTalk files to
your Visual Basic 6.0 project:

1. Open Visual Basic and create a new project.

2. Choose Add File from the Project menu.

3. Select the file OMTALK.FRM.

4. Choose Add File from the File menu again.

5. Select the file OMTALK.BAS.

To have these files loaded at run time, include the statement “Load
OmTalk” in the Form_Load event procedure of your startup form.
For example:

Sub Form_Load ()
 Load OmTalk
End Sub

If you are using Sub Main as your startup procedure, add the Load
OmTalk statement to Sub Main.

44 Thermo Nicolet

Troubleshooting
when using OmTalk

If you have problems using OmTalk within your Visual Basic
projects, check your projects for the following items.

1. Make sure you have added the OMTALK.BAS and
OMTALK.FRM files to your project. These two files contain the
routines that allow you to communicate with OMNIC.

2. Make sure the Form_Load procedure in your startup form

contains the line “Load OmTalk”. If you are using Sub Main as
your startup procedure, this line must be added to Sub Main.

 The statement “Load OmTalk” loads the form OMTALK.FRM

and initializes variables that are used for the DDE conversation
with OMNIC. If you attempt to communicate with OMNIC
without loading OmTalk, your first communication may have
unpredictable results.

Macros\Pro User’s Guide 45

Types of
OmTalk routines

The OmTalk routines handle the following basic interactions
between Visual Basic and OMNIC:

• OMNIC program control
• Parameter control
• Command execution
• Error handling
• Basic macro interaction
• Data array operations

OMNIC program
control routines

When the OmTalk subroutines are used in a project, they
automatically start the OMNIC application if it is not already
running. However, you may want to have the OMNIC application
start with a particular window style. For example, you may want
the application window to be minimized when it is first started.
The StartOMNIC subroutine allows you to specify the window
style for OMNIC when it starts. The EndOMNIC subroutine can
be used to stop the OMNIC application from within your Visual
Basic project.

Parameter
control routines

Several OmTalk subroutines can be used to set and read OMNIC
parameters. The SetOMNIC subroutine is used to set individual
OMNIC parameters. The GetOMNIC function can be used to read
OMNIC parameters. The GetVal function can be used to access
individual portions of parameter values when GetOMNIC returns a
complicated value such as Result Current.

Command
execution routines

The ExecuteOMNIC subroutine is used to send commands to
OMNIC.

46 Thermo Nicolet

Error handling
routines

It is good programming practice to check for error conditions when
using DDE. OmTalk provides several error handling routines. The
ErrMsgBox and ErrOMNIC subroutines can be used to verify that
the other OmTalk subroutine operations have successfully
completed. The ErrMsgBox subroutine can be used to display a
message box when an error involving OmTalk subroutines occurs.
The ErrOMNIC subroutine returns an error value that can be
checked for more sophisticated error handling.

Basic macro
interaction routines

You can write Pro macros that can be called from within Basic
macros created with Macros\Basic. For example, you may want to
write a Pro macro that can be used within a loop in a Basic macro.
However, once the Pro macro is encountered in the Basic macro,
the Basic macro waits to resume operation until it receives a
ResumeMacro message from the Pro macro. You can use the
ResumeMacro subroutine within the Pro macro to resume
executing the Basic macro.

You may also want to know when a Pro macro is being run for the
first time within a Basic macro loop. For example, you may want the
Pro macro to perform some initialization functions when it is run for
the first time within the loop. The GetArgStr subroutine can be used
to determine if the Pro macro is being run for the first time within a
Basic macro loop or if it is being run again from inside the loop.

Data array routines Visual Basic includes powerful array functions that can be used to
perform mathematical functions on your spectral data files. The
GetSpecData and GetDataArray subroutines can be used to extract
a portion of an OMNIC spectrum into a Visual Basic array. The
data can then be manipulated with the Visual Basic array
operations. The SetSpecData and SetDataArray subroutines can
then be used to transfer the manipulated data back into an OMNIC
spectral window.

 Note GetDataArray and SetDataArray cannot be used with 32-bit Visual
Basic projects; use the GetSpecData and SetSpecData routines
instead.

Macros\Pro User’s Guide 47

List of OmTalk
routines

A list of the OmTalk routines is shown below. Following this list are
descriptions of the routines in alphabetical order.

EndOMNIC
ErrMsgBox
ErrOMNIC
ExecuteApp
ExecuteOMNIC
FindOMNICData
GetApp
GetArgStr
GetDataArray
GetItem
GetMVVAl
GetOMNIC
GetOMNICName
GetOMNICVersion
GetSpecCollectTime
GetSpecData
GetVal
ItemCount
Pop
ResumeMacro
SetApp
SetDataArray
SetMVVal
SetOMNIC
SetSpecData
StartOMNIC
Strip

48 Thermo Nicolet

EndOMNIC This OmTalk routine causes the OMNIC application to quit.

 Syntax: EndOMNIC
 Remarks: The EndOMNIC statement does not have any arguments.
 Example: This example displays a dialog box with Yes and No buttons. If the

Yes button is clicked, it uses EndOMNIC to close OMNIC.
 If MsgBox("Do you want to close OMNIC?", vbQuestion Or vbYesNo) =

vbYes Then
 EndOMNIC
 End If

ErrMsgBox This OmTalk routine displays a message in a dialog box if an
OMNIC DDE error occurs. This message describes the DDE error
that occurred while talking with OMNIC.

 Syntax: ErrMsgBox
 Remarks: The ErrMsgBox statement does not have any arguments.
 Use the ErrMsgBox statement after all OmTalk statements and

functions. If the function was unsuccessful, ErrMsgBox displays a
message that describes the error. If no error occurs, no message box
is displayed.

 Example: These examples use ErrMsgBox to display any errors that may result
from a noise calculation.

 SetOMNIC “Display RegionStart”, 2250.0
 ErrMsgBox
 ExecuteOMNIC “CalculateNoise”
 ErrMsgBox

Macros\Pro User’s Guide 49

ErrOMNIC This OmTalk routine returns the OmTalk error status.

 Description: Returns OmTalk error status.
 Syntax: ErrOMNIC()
 Remarks: The ErrOMNIC function does not have any arguments.
 The function ErrOMNIC returns an integer that is the run-time error

code after an OmTalk function or statement. If the procedure was
successful, ErrOMNIC returns a value of zero; otherwise, it returns
the value of the Visual Basic Err function.

 Use the ErrOMNIC function after one of the OmTalk statements or
functions to test whether it was successful.

 Example: This example uses ErrOMNIC to see if the CalculateNoise command
was successfully carried out by OMNIC.

 ExecuteOMNIC “CalculateNoise”
 While ErrOMNIC() <> 0
 'Command failed. Set region and try again.
 SetOMNIC “Display RegionStart”, 2600
 SetOMNIC “Display RegionEnd”, 2400
 ExecuteOMNIC “CalculateNoise”
 ErrMsgBox
 End While

50 Thermo Nicolet

ExecuteApp This OmTalk routine sends a DDE command to a Windows
application other than OMNIC.

 Syntax: ExecuteApp <Application|Topic>, <DDE Command>
 Remarks: The ExecuteApp statement uses these arguments:

● Application|Topic - A string expression that is the name of the
application, the pipe char | (char code 124), and the topic you
want to communicate with. Make sure there are no spaces in this
string expression. This is the server or source application
referred to in the Visual Basic documentation.

● DDE Command - A variant expression that contains the exact
text of the command and associated arguments that you want the
source application to execute.

 This statement opens a DDE conversation with the source
application (server), sends the command, and then closes the DDE
conversation.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether ExecuteApp was
successful. An integer value of zero is returned if the application
carried out the command. If ExecuteApp was not successful, the
appropriate Visual Basic DDE error code is returned.

 Continue to use the ExecuteOMNIC statement rather than this one if
you are working with OMNIC. ExecuteOMNIC is optimized to do a
better job of managing the communication link with OMNIC.

 Note The source application must be running before the ExecuteApp
statement is executed. Unlike ExecuteOMNIC, ExecuteApp will not
automatically start the application if it is not running. If the
application is not running, the ErrOMNIC function will return the
Visual Basic DDE error code 282.

 Example: This example uses ExecuteApp to copy the contents of the cell in
row one, column one of the active Microsoft Excel® spreadsheet to
the contents of the cell in row two, column two.

 ExecuteApp “Excel|[Book1]Sheet1”, “[Copy(““R1C1””, ““R2C2””)]”
 ErrMsgBox

Macros\Pro User’s Guide 51

ExecuteOMNIC This OmTalk routine sends a command to OMNIC.

 Syntax: ExecuteOMNIC <string expression>
 Remarks: The ExecuteOMNIC statement takes an OMNIC DDE command as

its single argument. This argument must contain the exact text of the
command and any associated arguments that you want OMNIC to
execute.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether ExecuteOMNIC was
successful. ErrOMNIC returns an integer value of zero if OMNIC
carried out the command. If the command was not successful,
ErrOMNIC returns the Visual Basic DDE error code.

 Example: This example uses ExecuteOMNIC to collect a sample spectrum. If a
DDE error occurs, it is displayed by ErrMsgBox.

 ExecuteOMNIC “CollectSample”
 ErrMsgBox

52 Thermo Nicolet

FindOMNICData This OmTalk routine retrieves the pathname of the Data directory for
the current version of OMNIC.

 Syntax: FindOMNICData
(<DataDirectory>,<OmnicName>,<EZOmnicName>)

 Remarks: The FindOMNICData statement has three arguments.
● DataDirectory - The root directory for storing OMNIC data.
● OMNICName - The name of the OMNIC application: omnic.exe

or omnic32.exe.
● EZOmnicName - The name of the EZ OMNIC application:

ezomnic.exe or ezomnic32.exe.
 The FindOMNICData command is typically used to retrieve the

pathname of the OMNIC Data Directory. This is the root path to all
OMNIC directories used to store data, such as OMNIC spectra. For
OMNIC 4.1x installations, the path is typically C:\OMNIC. For
OMNIC 5.x installations, the path is usually
C:\MY DOCUMENTS\OMNIC.

 Example: This example uses FindOMNICData to retrieve the pathname of the
OMNIC data directory.

 Dim DataDirectory as string
 Dim OmnicName as string
 Dim EZOmnicName as string
 OmnicName=GetOMNICName()
 FindOMNICData (DataDirectory,OmnicName,EZOmnicName)

Macros\Pro User’s Guide 53

GetApp This OmTalk routine returns the current value of a parameter or
object property in a Windows application other than OMNIC.

 Syntax: GetApp(<Application|Topic>, <Parameter>)
 Remarks: The GetApp function uses these arguments:

● Application|Topic - A string expression that is the name of the
application, the pipe char | (char code 124), and the topic you
want to communicate with. Make sure there are no spaces in this
string expression. This is the server or source application
referred to in the Visual Basic documentation.

● Parameter - A string expression that is the name of the parameter
or object property whose value you want to get.

 GetApp returns a Variant data type that contains the current value of
the requested parameter or object property if the DDE command was
successful. If GetApp is unsuccessful, it returns an empty string
value (““).

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether GetApp was successful.
ErrOMNIC returns an Integer value of zero if the source application
supplied the requested parameter or object property value. If the
request was not successful, ErrOMNIC returns the appropriate
Visual Basic DDE error code.

 Continue to use the GetOMNIC function rather than this one if you
are working with OMNIC. GetOMNIC is optimized to do a better
job of managing the communication link with OMNIC.

 Note The application must be running before the GetApp function is
executed. Unlike GetOMNIC, GetApp will not automatically start
the application if it is not running. If the application is not running,
the ErrOMNIC function will return the Visual Basic DDE error code
282.

 (Continued on next page)

54 Thermo Nicolet

 Example: This example uses GetApp to obtain the current
value of the cell in row two, column three of the Microsoft Excel
spreadsheet Sheet1 of workbook Book1.

 Dim lvResult As Variant
 lvResult = GetApp(“Excel|[Book1]Sheet1”, “R2C3”)
 If ErrOMNIC() = 0 Then
 MsgBox “The value of the cell = “ & lvResult
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 55

GetArgStr This OmTalk routine returns a String containing the argument
portion of the command string sent by a destination application to
your Visual Basic application in a DDE conversation. (See
LinkExecute Event in the Visual Basic documentation.)

 Syntax: GetArgStr()
 Remarks: The GetArgStr function does not have any arguments. The function

GetArgStr returns the String “rerun” when your application is being
run again by Macros\Basic or Macro Panel. You can use this
function in the Form_Load procedure of your startup form to test
whether your application is being rerun. If there is no argument
portion in the command string sent by the destination application,
GetArgStr returns the command string rather than an empty string.

 Example: This example uses GetArgStr to test for reruns. If the application is
being rerun, it repeats a calculation. The application is initialized
only the first time it is run.

 Sub Form_Load ()
 If GetArgStr() = “rerun” Then
 'This app is being run again by a Basic Macro; just repeat calculation:
 RepeatCalc
 Else
 'Initial load:
 Load OmTalk
 Init
 RepeatCalc
 End If
 End Sub

56 Thermo Nicolet

GetDataArray This OmTalk routine obtains numerical spectral data from the
currently selected OMNIC spectrum and places it into an array. This
routine can be used only with 16-bit versions of Visual Basic. If you
are using 32-bit Visual Basic 4.0 or Visual Basic 5.0, you must use
the GetSpecData routine instead.

 Syntax: GetDataArray <firstX>, <lastX>
 Remarks: The GetDataArray statement uses these arguments:

● firstX - A numerical expression that is one boundary of a spectral
region.

● lastX - A numerical expression that is the other boundary of a
spectral region.

 Both firstX and lastX should have the same unit as the X-axis.
 GetDataArray returns the spectral data into the global array

DataArray() of type Single. GetDataArray also sets the following
global variables of type Variant:
● GetSpecNum – The number of data points returned.
● GetSpecFirstX – The X-axis value of first point in DataArray().
● GetSpecLastX – The X-axis value of last point in DataArray().
● GetSpecIncrement – The data point spacing of DataArray() in X-

axis units.
 The above variables are declared as global variables of the Variant

data type in the OmTalk declarations section. The DataArray() array
is declared as a Single data type and global. Do not declare these
variables in your code, because these are global variables. Global
variables are available in every procedure in every form and code
module in your application.

 Use the function ErrOMNIC to test whether GetDataArray was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested spectral data. If the request was not
successful, ErrOMNIC returns the appropriate Visual Basic DDE
error code.

 (Continued on next page)

Macros\Pro User’s Guide 57

 The GetDataArray routine in this version of OmTalk accesses
OMNIC spectral data by direct calls into OMNIC rather than via
DDE. This results in faster execution than the GetSpecData routine
but can be used only with Visual Basic 3.0 or 16-bit Visual Basic
4.0.

 The GetDataArray routine is completely compatible with the
GetSpecData routine. The only real difference you may notice is that
the spectral data is of type Single and put into the global array
DataArray() instead of the SpecData() array of type Variant.

 Example: See the sample project GETDATA.VBP shipped with the
Macros\Pro software for a complete example of GetDataArray. The
following example uses GetDataArray to obtain the spectral data
from the region 1620 - 1600 cm-1. A message box displays the
number of data points returned and their X and Y values.

 Dim lvText As String
 Dim lvCrLf As String
 Dim lvTab As String
 Dim lvIndex As Integer
 Dim lvXVal As Single
 GetDataArray 1620, 1600
 If ErrOMNIC() = 0 Then
 lvText$ = “Number of data points returned = “ & GetSpecNum
 lvCrLf$ = Chr$(13) & Chr$(10)
 lvTab$ = Chr$(9)
 lvText$ = lvText$ & lvCrLf$ & “Point” & lvTab$ & “X value” & 1vTab$ &
 “Y value”
 For lvIndex% = 1 To GetSpecNum
 lvXVal! = GetSpecFirstX - (lvIndex% - 1) * GetSpecIncrement
 lvText$ = lvText$ & lvCrLf$ & Str$(lvIndex%) & lvTab$ &

 Str$(lvXVal!)
 lvText$ = lvText$ & lvTab$ & Str$(DataArray(lvIndex%))
 Next lvIndex%
 MsgBox lvText$
 Else
 ErrMsgBox
 End If

58 Thermo Nicolet

GetItem This OmTalk routine returns the value of an item in a list as a
Variant data type.

 Syntax: GetItem(<list string>, <item number>)
 Remarks: The GetItem function uses these arguments:

● list string - A string expression containing a list of separated
values. Assumes items are separated by the list separator
character specified in the International section of the Windows
Control Panel application.

● item number - An integer expression that is the item number in
the list you want.

 This function (and also the ItemCount and Pop functions) is useful
when you want to obtain specific items from the list of values
returned by the Result Array OMNIC parameter.

 Example: This example obtains the list of results from a noise calculation and
picks out the third value, which is the peak-to-peak noise value.

 Dim lvList As String
 Dim lvNoise As Single
 ExecuteOMNIC “CalculateNoise”
 If ErrOMNIC() = 0 Then
 lvList$ = GetOMNIC(“Result Array”)
 lvNoise! = GetItem(lvList$, 3)
 MsgBox “The peak-to-peak noise level = “ & Format$(lvNoise!, “0.0000”)
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 59

GetMVVal This OmTalk routine returns the current value of a Macros\Basic
macro variable.

 Syntax: GetMVVal(<Macro variable number>)
 Remarks: The GetMVVal function takes a long expression as its single

argument. You must specify the number of the macro variable whose
value you want to obtain. This value must be between 1 and 65535
for Macros\Basic 4.0 or higher and between 1 and 100 for
Macros\Basic 3.0 or lower. Do not include the mv prefix. GetMVVal
returns a variant data type that contains the current value of the
requested macro variable if the DDE command was successful. If
GetMVVal is unsuccessful, it returns an empty string value (““).

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether GetMVVal was
successful. ErrOMNIC returns an integer value of zero if the
Macros\Basic macro supplied the requested object value. If the
request was not successful, ErrOMNIC returns the Visual Basic
DDE error code.

 Example: This example uses GetMVVal to obtain the current value of macro
variable mv3.

 Dim lvVal As Variant
 lvVal = GetMVVal(3)
 If ErrOMNIC() = 0 Then
 MsgBox “The current value of mv3 = “ & Format$(lvVal, “0.00”)
 Else
 ErrMsgBox
 End If

60 Thermo Nicolet

GetOMNIC This OmTalk routine returns the value of an OMNIC parameter.

 Syntax: GetOMNIC(<Parameter name>)
 Remarks: The GetOMNIC function takes a string expression as its single

argument. You must specify the name of the OMNIC parameter
whose value you want to obtain. The parameter name argument must
contain a group name followed by a space and the parameter name.

 GetOMNIC returns a Variant data type that contains the value of the
requested parameter if the DDE command was successful. If
GetOMNIC is unsuccessful, it returns the text “#ERRORn#”, where
n is the Visual Basic error code, Err.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether GetOMNIC was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested parameter value. If the request was not
successful, ErrOMNIC returns the Visual Basic DDE error code.

 Example: This example uses GetOMNIC to obtain the result of a noise
calculation.

 ExecuteOMNIC “CalculateNoise”
 If ErrOMNIC() = 0 Then
 noise$ = GetOMNIC(“Result Current”)
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 61

GetOMNICName This OmTalk routine retrieves the full application name from
OMNIC. Use it to determine which version of OMNIC (16- or 32-
bit) or EZ OMNIC (16- or 32-bit) is currently running.

 Syntax: GetOMNICName ()
 Remarks: The GetOMNICName statement has no argument.
 Example: This example uses GetOMNICName to retrieve the name of the

current version of OMNIC.
 dim szOmnicName as string
 szOmnicName=GetOMNICName ()

GetOMNICVersion This OmTalk routine returns the version number of OMNIC as a
variant.

 Syntax: GetOMNICVersion (<avFormat>)
 Remarks: The GetOMNICVersion statement has a single argument which can

be used to control the format of the returned version number.
● avFormat = 0 - Returns the version number in native format with

major and minor revisions separated by decimals. Example:
5.0.0.1

● avFormat = 1 - Returns the version number as a floating point
number with minor revisions concatenated. Example: 5.001

 Example: This example uses GetOMNICVersion to retrieve the version
number in the native format.

 dim lvVal as Variant
 lvVal=GetOMNICVersion (0)

62 Thermo Nicolet

GetSpecCollectTime This OmTalk routine returns a variant that indicates the date and
time when the currently selected spectrum was collected.

 Syntax: GetSpecCollectTime(<format>)
 Remarks: The argument <format> is an integer that determines the format of

the returned date and time as follows.
● 1 - Returns a variant of VarType 7 (Date) containing a date and

time stored internally as a double-precision number. This is
referred to as a time serial number in the Visual Basic
documentation. Numbers to the left of the decimal point
represent the date; numbers to the right represent the time. See
the Visual Basic Now function for details on this format.

● 2 - Returns a variant of VarType 8 (String) containing the date
and time in the same format as shown in the OMNIC spectrum
collection and processing information.

 The time serial form (<format> = 1) is the time/date representation
used in Visual Basic. You can use this number with the Visual Basic
Format function to render time and date in any format you want. For
more details on using the time serial form, see the documentation on
the following Visual Basic functions: Day, Hour, Minute, Month,
Now, Second, Weekday and Year.

 Example: The first example uses GetSpecCollectTime to get the spectrum
collection time in time serial format. The Format function is used to
display the result as “14 January 93 2:23 pm”. The second example
uses GetSpecCollect-Time to get the spectrum collection time as a
string and display it as “Thu Jan 14 14:24:20 1993”.

 Dim lvTime As Variant
 lvTime = GetSpecCollectTime(1)
 MsgBox Format(lvTime, “d mmmm yy h:mm am/pm”)
 lvTime = GetSpecCollectTime(2)
 MsgBox lvTime

Macros\Pro User’s Guide 63

GetSpecData This OmTalk routine obtains numeric spectral data from an OMNIC
spectrum and places it in an array. For 32-bit Visual Basic projects,
you must use this routine instead of the GetDataArray routine. If you
are building a 16-bit Visual Basic application, you may use the
GetDataArray routine instead; it is faster.

 Syntax: GetSpecData <firstX>, <lastX>
 Remarks: The GetSpecData statement uses these arguments:

● firstX - A numeric expression that is the one boundary of a
spectral region.

● lastX - A numeric expression that is the other boundary of a
spectral region.

 Both firstX and lastX should have the same unit as the X-axis.
 GetSpecData returns the spectral data into the global array

SpecData(). GetSpecData also sets the following global variables:
● GetSpecNum - The number of data points returned.
● GetSpecFirstX - The X-axis value of the first point in

SpecData().
● GetSpecLastX - The X-axis value of the last point in SpecData().
● GetSpecIncrement - The data point spacing of SpecData() in X-

axis units.
 The above variables and the SpecData() array are defined in the

OmTalk declarations section as variant data types. You do not need
to define these variables in your code.

 Use the function ErrOMNIC to test whether GetSpecData was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested spectral data. If the request was not
successful, ErrOMNIC returns the Visual Basic DDE error code.

 (Continued on next page)

64 Thermo Nicolet

 Example: See the sample project GetData.vbp shipped with the Macros\Pro
software for a complete example of GetDataArray.

 The following example uses GetSpecData to obtain the spectral data
from the region from 1620 to 1600 cm-1. A message box displays
the number of data points returned and the value of the first data
point.

 GetSpecData 1620, 1600
 if ErrOMNIC() = 0 Then
 tex$ = “Number of data points returned = “ + GetSpecNum
 tex$ = tex$ + Chr$(13) & Chr$(10) & “1st point X value =”

 & GetSpecFirstX
 tex$ = tex$ & Chr$(13) & Chr$(10) & “1st point Y value =”

 & SpecData(1)
 MsgBox tex$
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 65

GetVal This OmTalk routine returns the numeric value corresponding to the
word following the search string in a text string. This function has
been made obsolete by use of the GetItem function in conjunction
with the OMNIC parameter Result Array. See the Get Item function.

 Syntax: GetVal(<text string> <search string>)
 Remarks: The GetVal function uses these arguments:

● text string - The string expression being searched.
● search string - The string expression being sought.

 The GetVal function always returns a Double data type. If the search
string is not found in the text string, a value of zero is returned.
GetVal ignores any “:” or “(“ characters that may occur between the
search string and the value that follows it.

 The format for OMNIC text returned via the Result Current
parameter is the same as that shown in the OMNIC readout or dialog
boxes. For example, the CorrectedPeakArea command sets Result
Current to “Area: 19.289 Uncorrected: 25.157 Region: (1468.346,
1423.154) Baseline: (1468.846, 1415.667)”.

 Example: This example uses GetVal to extract the values of the minimum and
maximum from the result string of the OMNIC MinMax command.
Note that the colon following the search string is optional.

 ExecuteOMNIC “minmax”
 ErrMsgBox
 result$ = GetOMNIC(“Result Current”)
 ErrMsgBox
 min = GetVal(result$, “Min:”)
 max = GetVal(result$, “Max”)

66 Thermo Nicolet

ItemCount This OmTalk routine returns the number of items in a list as an
integer data type.

 Syntax: ItemCount(<list string>)
 Remarks: The ItemCount function takes a string expression as its single

argument. This expression is a list of separated values. ItemCount
assumes items are separated by the list separator character specified
on the Number tab of the Regional Settings application, located in
the Windows Control Panel folder. For Windows 3.1, use the
International section of the Control Panel application. ItemCount
returns an integer data type that is the number of items in the list
string. If the list string argument is empty, ItemCount returns a value
of zero. This function (and also the GetItem and Pop functions) is
useful when you want to obtain specific items from the list of values
returned by the Result Array OMNIC parameter.

 Example: This example displays a table of results from a Find Peaks operation.
 Dim lvList As String
 Dim lvTable As String
 Dim lvCount As Integer
 Dim lvIndex As Integer
 Dim lvPeakPosition As Single
 Dim lvPeakValue As Single
 ExecuteOMNIC “PeakPick 0.25 50”
 If ErrOMNIC() = 0 Then
 lvList$ = GetOMNIC(“Result Array”)
 lvCount% = ItemCount(lvList$)
 For lvIndex% = 5 To lvCount% Step 2
 lvPeakPosition! = GetItem(lvList$, lvIndex%)
 lvPeakValue! = GetItem(lvList$, lvIndex% + 1)
 lvTable$ = lvTable$ & Format$(lvPeakPosition!, “0.00”) & Chr$(9)
 lvTable$ = lvTable$ & Format$(lvPeakValue!, “0.0000”) & Chr$(13)

 & Chr$(10)
 Next lvIndex%
 MsgBox lvTable$, 64, “Find Peaks Result”
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 67

Pop This OmTalk routine returns the first item in a list and removes this
item from the list.

 Syntax: Pop(<list string>)
 Remarks: The Pop function takes a string expression as its single argument.

This expression is a list of separated values. Pop assumes items are
separated by the list separator character specified on the Number tab
of the Regional Settings application, located in the Windows Control
Panel folder. For Windows 3.1, use the International section of the
Control Panel application.

 Pop returns a variant data type that is the value of the first item in
the list string. If the list string argument is empty, Pop returns a null
string value (““).

 This function is useful when you want to process items from the list
of values returned by the Result Array OMNIC parameter. See also
the functions ItemCount and GetItem.

 Example: This example stores the results of a Quantify operation in the array
lvConc. Note how the array lvConc is dynamically allocated. This
lets this code work for any number of results up to 40 components.

 Dim lvQuantResult As String
 Dim lvConc() As Single
 Dim lvVal As Variant
 Dim lvIndex As Integer
 ExecuteOMNIC “Quantify”
 lvQuantResult$ = GetOMNIC(“Result Array”)
 If ErrOMNIC() = 0 Then
 ReDim lvConc!(40)
 lvIndex% = 0
 lvVal = Pop(lvQuantResult$)
 While lvVal <> ““
 lvIndex% = lvIndex% + 1
 lvConc!(lvIndex%) = lvVal
 lvVal = Pop(lvQuantResult$)
 Wend
 ReDim Preserve lvConc!(lvIndex%)
 End If

68 Thermo Nicolet

ResumeMacro This OmTalk routine tells either the Macros\Basic or Macro Panel
application to resume executing tasks in a Macros\Basic macro.

 Syntax: ResumeMacro
 Remarks: The ResumeMacro statement does not have any arguments. Use it to

control when to continue with execution of tasks in a Macros\Basic
macro.

 When you run a macro from the OMNIC toolbar or the Macro Panel
or use the Test command from Macros\Basic, the Macros\Basic
macro suspends execution at the Macro task that executes your
Visual Basic application. Use ResumeMacro to continue execution
of the Macros\Basic tasks following the Macro task in your macro. If
you do not call ResumeMacro, your macro will remain suspended
until your Visual Basic application closes.

 If a macro does not need to wait for your Visual Basic application,
use the ResumeMacro statement in the Load_Form event procedure
of your Visual Basic startup form.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether ResumeMacro was
successful. ErrOMNIC returns an integer value of zero if either of
the applications “Macros\Basic” or “Macro Panel” carried out the
request. If the request was not successful, ErrOMNIC returns the
Visual Basic error code.

 Example: This example uses ResumeMacro to resume a macro after it has
displayed the result of a noise calculation.

 ExecuteOMNIC “CalculateNoise”
 ErrMsgBox
 noise$ = GetOMNIC(“Result Current”)
 ErrMsgBox
 MsgBox noise$, 64, “Noise Result”
 ResumeMacro
 ErrMsgBox

Macros\Pro User’s Guide 69

SetApp This OmTalk routine sets the value of a parameter or object property
in a Windows application other than OMNIC.

 Syntax: SetApp <Application|Topic>, <Parameter>, <Value>)
 Remarks: The SetApp statement uses these arguments:

● Application|Topic - A string expression that is the name of the
application, the pipe char | (char code 124), and the topic you
want to communicate with. Make sure there are no spaces in this
string expression. This is the server or source application
referred to in the Visual Basic documentation.

● Parameter - A string expression that is the name of the parameter
or object property whose value you want to set.

● Value - A variant expression that is the value you want to assign
to the parameter or object property.

 This statement opens a DDE conversation with the source
application, sets the parameter or object property value, and then
closes the DDE conversation.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether SetApp was successful.
ErrOMNIC returns an integer value of zero if the application set the
parameter or object property to the specified value. If SetApp was
not successful, ErrOMNIC returns the appropriate Visual Basic DDE
error code.

 Continue to use the SetOMNIC statement rather than this one if you
are working with OMNIC. SetOMNIC is optimized to do a better
job of managing the communication link with OMNIC.

 Note The application must be running before the SetApp statement is
executed. Unlike SetOMNIC, SetApp will not automatically start the
application if it is not running. If the application is not running, the
ErrOMNIC function will return the Visual Basic DDE error code
282.

 (Continued on next page)

70 Thermo Nicolet

 Example: This example sets the value of the cell in row two, column three to
0.153 in the Microsoft Excel spreadsheet with the name Sheet1. If
Excel is not running, the Visual Basic Shell function is used to start
Excel.

 Dim lvHwnd As Integer
 SetApp “Excel|[Book1]Sheet1”, “R2C3”, .153
 If ErrOMNIC() <> 0 Then
 If ErrOMNIC() = 282 Then
 lvHwnd% = Shell(“excel.exe”, 1)
 DoEvents
 SetApp “Excel|[Book1]Sheet1”, “R2C3”, .153
 Else
 ErrMsgBox
 End If
 End If

Macros\Pro User’s Guide 71

SetDataArray This OmTalk routine sets the numeric values of spectral data in the
currently selected OMNIC spectrum. This routine can be used only
with 16-bit versions of Visual Basic. If you are using 32-bit Visual
Basic 4.0 or Visual Basic 5.0, you must use SetSpecData instead.

 Syntax: SetDataArray
 Remarks: The SetDataArray statement does not have any arguments. It sets the

spectral data in the currently selected OMNIC spectrum to the values
contained into the global array DataArray(). The following global
variables specify the number of data points and region of data to be
set:
● GetSpecNum - The number of data points returned.
● GetSpecFirstX - The X-axis value of the first point in

DataArray().
● GetSpecLastX - The X-axis value of the last point in

DataArray().
● GetSpecIncrement - The data point spacing of DataArray() in X-

axis units.
 The above variables are declared as global variables of Variant data

type in the OmTalk declarations section. The DataArray() array is
declared as a Single data type and global. Do not declare these
variables in your code, because these are global variables. Global
variables are available in every procedure in every form and code
module in your application.

 Use the function ErrOMNIC to test whether SetDataArray was
successful. ErrOMNIC returns an integer value of zero if OMNIC
accepted the spectral data. If SetDataArray was not successful,
ErrOMNIC returns the appropriate Visual Basic DDE error code.

 The SetDataArray routine in this version of OmTalk accesses
OMNIC spectral data by direct calls into OMNIC rather than via
DDE. This results in faster execution than the SetSpecData routine
but can be used only with Visual Basic 3.0 or 16-bit Visual Basic
4.0.

 (Continued on next page)

72 Thermo Nicolet

 The SetDataArray routine is completely compatible with the
SetSpecData routine. The main differences you may encounter are:
● The spectral data is stored in the global array DataArray(), which

is a Single data type. SetSpecData used the type Variant array
SpecData().

● The SetSpecData routine interpolates additional data points if
GetSpecNum, the number of data points, is fewer than the
number of data points OMNIC needs for the region specified by
GetSpecFirstX and GetSpecLastX.

 The SetDataArray will not do this. This is not a problem if you
always use GetDataArray in conjunction with SetDataArray.
GetDataArray automatically sets GetSpecNum to the correct
value for the region you are working with.

 Example: See the sample project GetData.vbp shipped with the Macros\Pro
software for a complete example of SetDataArray.

 The example below uses SetDataArray to fit a straight line across
the spectral data from the region 2400 to 2200 cm-1.

 Dim lvIncrement as Single
 Dim lvIndex as Integer
 GetDataArray 2400, 2200
 lvIncrement! = (DataArray(GetSpecNum) - DataArray(1))/(GetSpecNum - 1)
 For lvIndex% = 2 To GetSpecNum
 DataArray(lvIndex%) = DataArray(1) + lvIncrement! * (lvIndex% - 1)
 Next lvIndex%
 SetDataArray

Macros\Pro User’s Guide 73

SetMVVal This OmTalk routine sets the value of a Macros\Basic macro
variable.

 Syntax: SetMVVal(<Macro variable number>, <Value>)
 Remarks: The SetMVVal statement uses these arguments:

● Macro variable number - A long expression that is the number of
the macro variable whose value you want to set. Do not include
the mv prefix.

● Value - A variant expression that is the value you want to assign
to the macro variable.

 The macro variable number must be between 1 and 65535 for
Macros\Basic 4.0 or higher or between 1 and 100 for Macros\Basic
3.0 or lower.

 It is not necessary for the macro variable to be declared in the
Macros\Basic macro, since this routine will create the macro
variable definition. This is useful when you want to pass values from
your Visual Basic application back to a Macros\Basic macro.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether SetMVVal was
successful. ErrOMNIC returns an integer value of zero if the
Macros\Basic macro set the macro variable to the specified value. If
SetMacro was not successful, ErrOMNIC returns the Visual Basic
DDE error code.

 (Continued on next page)

74 Thermo Nicolet

 Example: This example evaluates the first component value from a Quant
result and then uses SetMVVal to set the value of macro variable
mv3 to an appropriate text message.

 Dim lvQuantResult As String
 Dim lvText As String
 ExecuteOMNIC “Quantify”
 lvQuantResult$ = GetOMNIC(“Result Array”)
 If ErrOMNIC() = 0 Then
 If .5 < Pop(lvQuantResult$) < 1# Then
 lvText$ = “Product is within acceptable limits.”
 Else
 lvText$ = “Product is out of spec.”
 End If
 SetMVVal 3, lvText$
 End If
 ErrMsgBox

Macros\Pro User’s Guide 75

SetOMNIC This OmTalk routine sets an OMNIC parameter to a value that you
specify.

 Syntax: SetOMNIC <Parameter name>, <Value>
 Remarks: The SetOMNIC statement uses these arguments:

● Parameter name - A string expression that is the name of an
OMNIC parameter whose value you want to set. The parameter
name argument must contain a group name followed by a space
and the parameter name.

● Value - A variant expression that is the value to set the parameter
to.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether SetOMNIC was
successful. ErrOMNIC returns an integer value of zero if OMNIC
set the parameter to the specified value. If SetOMNIC was not
successful, ErrOMNIC returns the Visual Basic DDE error code.

 Example: This example uses SetOMNIC to set the spectral region before a
noise calculation. It then obtains the result of the noise calculation.

 SetOMNIC “Display RegionStart”, 2250.0
 ErrMsgBox
 SetOMNIC “Display RegionEnd”, 2200.0
 ErrMsgBox
 ExecuteOMNIC “CalculateNoise”
 If ErrOMNIC() = 0 Then
 noise$ = GetOMNIC(“Result Current”)
 Else
 ErrMsgBox
 End If

76 Thermo Nicolet

SetSpecData This OmTalk routine sets the numeric values of spectral data in an
OMNIC spectrum. For 32-bit Visual Basic projects, you must use
this routine instead of the SetDataArray routine. If you are building a
16-bit Visual Basic application, you may use the SetDataArray
routine instead; it is faster.

 Syntax: SetSpecData
 Remarks: The SetSpecData statement does not have any arguments.
 SetSpecData sets the spectral data in the currently selected OMNIC

spectrum to the values contained in the global array SpecData(). The
following global variables specify the number of data points and
region of data to be set:
● GetSpecNum - The number of data points to be set.
● GetSpecFirstX - The X-axis value of the first point in

SpecData().
● GetSpecLastX - The X-axis value of the last point in SpecData().

 The above variables and the SpecData() array are defined in the
OmTalk Declarations section as Variant data types. You do not need
to define these variables in your code.

 Use the function ErrOMNIC to test whether SetSpecData was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested spectral data. If the request was not
successful, ErrOMNIC returns the Visual Basic DDE error code.

 Example: See the sample project GetData.vbp shipped with the Macros\Pro
software for a complete example of SetSpecData.

 This example uses SetSpecData to fit a straight line across the
spectral data from the region 2400 to 2200 cm-1.

 GetSpecData 2400, 2200
 increment = (SpecData(GetSpecNum) - SpecData(1)) / (GetSpecNum-1)
 For i% = 2 To GetSpecNum
 SpecData(i%) = SpecData(1) + increment*(i%-1)
 Next i%
 SetSpecData

Macros\Pro User’s Guide 77

StartOMNIC This OmTalk routine runs OMNIC if it is not already running.

 Note You do not need to call StartOMNIC before using the other OmTalk
routines. If OMNIC is not already running when you try to
communicate with it, it will be started automatically. Use
StartOMNIC only if you must launch OMNIC with a specific
window style or argument string. If OMNIC is already running when
you call StartOMNIC, you may get an error message.

 Syntax: StartOMNIC(<Window style> <Argument string>)
 Remarks: The StartOMNIC function has these arguments:

● window style - An integer corresponding to the style of the
OMNIC window.

● argument string - A string expression containing any arguments
or command line switches.

 The following table identifies the possible values for the window
style and the style of window that occurs as a result:
● 1 - The normal window with focus.
● 2 - Minimized with focus.
● 3 - Maximized with focus.
● 4 - The normal window without focus.
● 7 - Minimized without focus.

 Set the argument string argument to an empty string if you do not
use any command line options. Command line options are:
● <filename> - The name of a valid spectral data file that is to be

displayed in the initial window.
● -b<benchfile> - Use benchfile instead of real bench.
● -i - Run in invisible mode; that is, with no user interface.
● -l <x,y> - The location of the upper-left corner, in pixels.
● -s<width,height> - The width and height, in pixels.

(Continued on next page)

78 Thermo Nicolet

 If the StartOMNIC function is successful in starting OMNIC, it
returns a variant task identification (ID) for OMNIC. The task ID is
a unique number that identifies OMNIC. If StartOMNIC is
unsuccessful in starting OMNIC, Visual Basic generates an error
message.

 Example: These examples use StartOMNIC to launch OMNIC. In the first
example, the OMNIC window is minimized to an icon and the
Visual Basic application retains the focus. In the second example,
the OMNIC window is displayed in the upper-left corner of the
screen, 820 wide by 520 high.

 i = StartOMNIC(7, ““)
 i = StartOMNIC(1, “-10,0 -s820,520”)

 Note Earlier versions of the manual said the return type was integer. This
is incorrect; it should be variant. For 16-bit versions of OMTALK,
using the integer return type worked. For 32-bit versions, you must
use the variant. You will get overflow error messages if you use an
integer type.

Macros\Pro User’s Guide 79

Strip This OmTalk routine returns a string with any leading and trailing
white space characters removed.

 Syntax: Strip (<text string>)
 Remarks: The Strip function takes a text string as its single argument. The

function removes any carriage return, line feed, tab or space
characters from the start and end of the string, and then returns the
text string.

 Example: This example removes white space characters from the start and end
of a text string but leaves embedded white space alone.

 Dim lvTex as String
 Dim lvRetVal as String
 lvTex$ = “ This is “&Chr$(9) & “Column 1” & Chr$(13) & Chr$(10)
 lvRetVal = Strip(lvTex$)

80 Thermo Nicolet

Using the OmTalk.NET Routines

OmTalk.NET is a set of Visual Basic routines designed to simplify the
development of macros using Visual Basic.NET and the OMNIC
commands and parameters. The OmTalk routines handle the
communications between Visual Basic and OMNIC so that you don’t
have to program the interactions between the two applications.

The OmTalk.NET routines are included on the Macros\Pro software
disk in two files: OMTALK.EXE and OMTALK32.VB. (If you are
using Visual Basic 6.0, you must use OMTALK32.BAS.)

The OmTalk routines are listed in the Macros\Pro on-line help
system and include the following:

EndOMNIC GetOMNIC SetApp
ErrMsgBox GetOMNICName SetMVVal
ErrOMNIC GetOMNICVersion SetOMNIC
ExecuteApp GetSpecCollectTime SetSpecData
ExecuteOMNIC GetSpecData StartOMNIC
FindOMNICData GetVal Strip
GetApp ItemCount UnloadOmTalk
GetItem LoadOmTalk
GetMVVal Pop

 Note The GetArgStr, GetDataArray, ResumeMacro, and SetDataArray
OmTalk routines are not supported by OmTalk.NET.

Macros\Pro User’s Guide 81

Adding OmTalk
to Visual Basic.NET

projects

In order to use OmTalk.NET in your Visual Basic.NET projects, you
need to do several things. First, since the OmTalk routines handle
the communications between OMNIC and Visual Basic, you must
include the OMTALK32.VB in each project you create.

1. Open Visual Basic.NET and create a new project.

2. Choose Add Existing File from the Project menu.

3. Select the file OMTALK32.VB.

To have the OmTalk.NET files loaded at run time, include the
statement “LoadOmTalk” in the Form_Load event procedure of your
startup form. For example:

Sub Form_Load ()
 LoadOmTalk
End Sub

If you are using Sub Main as your startup procedure, add the
LoadOmTalk statement to Sub Main.

82 Thermo Nicolet

Types of
OmTalk.NET routines

The OmTalk.NET routines handle the following basic interactions
between Visual Basic.NET and OMNIC:

• OMNIC program control
• Parameter control
• Command execution
• Error handling
• Basic macro interaction
• Data array operations

OMNIC program
control routines

When the OmTalk subroutines are used in a project, they
automatically start the OMNIC application if it is not already
running. However, you may want to have the OMNIC application
start with a particular window style. For example, you may want
the application window to be minimized when it is first started.
The StartOMNIC subroutine allows you to specify the window
style for OMNIC when it starts. The EndOMNIC subroutine can
be used to stop the OMNIC application from within your Visual
Basic project.

Parameter
control routines

Several OmTalk subroutines can be used to set and read OMNIC
parameters. The SetOMNIC subroutine is used to set individual
OMNIC parameters. The GetOMNIC function can be used to read
OMNIC parameters. The GetVal function can be used to access
individual portions of parameter values when GetOMNIC returns a
complicated value such as Result Current.

Command
execution routines

The ExecuteOMNIC subroutine is used to send commands to
OMNIC.

Macros\Pro User’s Guide 83

Error
handling routines

It is good programming practice to check for error conditions.
OmTalk provides several error handling routines. The ErrMsgBox
and ErrOMNIC subroutines can be used to verify that the other
OmTalk.NET subroutine operations have successfully completed.
The ErrMsgBox subroutine can be used to display a message box
when an error involving OmTalk subroutines occurs. The
ErrOMNIC subroutine returns an error value that can be checked
for more sophisticated error handling.

Data array routines Visual Basic includes powerful array functions that can be used to
perform mathematical functions on your spectral data files. The
GetSpecData subroutine can be used to extract a portion of an
OMNIC spectrum into a Visual Basic array. The data can then be
manipulated with the Visual Basic array operations. The
SetSpecData subroutine can then be used to transfer the
manipulated data back into an OMNIC spectral window.

84 Thermo Nicolet

List of
OmTalk.NET routines

A list of the OmTalk.NET routines is shown below. Following this
list are descriptions of the routines in alphabetical order.

EndOMNIC
ErrMsgBox
ErrOMNIC
ExecuteApp
ExecuteOMNIC
FindOMNICData
GetApp
GetItem
GetMVVAl
GetOMNIC
GetOMNICName
GetOMNICVersion
GetSpecCollectTime
GetSpecData
GetVal
ItemCount
LoadOmTalk
Pop
SetApp
SetMVVal
SetOMNIC
SetSpecData
StartOMNIC
Strip
UnloadOmTalk

Macros\Pro User’s Guide 85

EndOMNIC This OmTalk routine causes the OMNIC application to quit.

 Syntax: EndOMNIC()
 Remarks: The EndOMNIC statement does not have any arguments.
 Example: This example displays a dialog box with Yes and No buttons. If the

Yes button is clicked, it uses EndOMNIC to close OMNIC.
 If MsgBox("Do you want to close OMNIC?", vbQuestion Or vbYesNo) =

vbYes Then
 EndOMNIC()
 End If

ErrMsgBox This OmTalk routine displays a message in a dialog box if an error
occurs. This message describes the error that occurred while talking
with OMNIC.

 Syntax: ErrMsgBox()
 Remarks: The ErrMsgBox statement does not have any arguments.
 Use the ErrMsgBox statement after all OmTalk statements and

functions. If the function was unsuccessful, ErrMsgBox displays a
message that describes the error. If no error occurs, no message box
is displayed.

 Example: These examples use ErrMsgBox to display any errors that may result
from a noise calculation.

 SetOMNIC (“Display RegionStart”, 2250.0)
 ErrMsgBox()
 ExecuteOMNIC (“CalculateNoise”)
 ErrMsgBox()

86 Thermo Nicolet

ErrOMNIC This OmTalk routine returns the OmTalk error status.

 Description: Returns OmTalk error status.
 Syntax: ErrOMNIC()
 Remarks: The ErrOMNIC function does not have any arguments.
 The function ErrOMNIC returns an integer that is the run-time error

code after an OmTalk function or statement. If the procedure was
successful, ErrOMNIC returns a value of zero; otherwise, it returns
the value of the Visual Basic Err function.

 Use the ErrOMNIC function after one of the OmTalk statements or
functions to test whether it was successful.

 Example: This example uses ErrOMNIC to see if the CalculateNoise command
was successfully carried out by OMNIC.

 ExecuteOMNIC “CalculateNoise”
 While ErrOMNIC() <> 0
 'Command failed. Set region and try again.
 SetOMNIC (“Display RegionStart”, 2600)
 SetOMNIC (“Display RegionEnd”, 2400)
 ExecuteOMNIC (“CalculateNoise”)
 ErrMsgBox()
 End While

Macros\Pro User’s Guide 87

ExecuteApp This OmTalk routine sends a DDE command to a Windows
application other than OMNIC.

 Syntax: ExecuteApp (<Application|Topic>, <DDE Command>)
 Remarks: The ExecuteApp statement uses these arguments:

● Application|Topic - A string expression that is the name of the
application, the pipe char | (char code 124), and the topic you
want to communicate with. Make sure there are no spaces in this
string expression. This is the server or source application
referred to in the Visual Basic documentation.

● DDE Command - A string expression that contains the exact text
of the command and associated arguments that you want the
source application to execute.

 This statement opens a DDE conversation with the source
application (server), sends the command, and then closes the DDE
conversation.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether ExecuteApp was
successful. An integer value of zero is returned if the application
carried out the command. If ExecuteApp was not successful, the
appropriate Visual Basic error code is returned.

 Continue to use the ExecuteOMNIC statement rather than this one if
you are working with OMNIC. ExecuteOMNIC is optimized to do a
better job of managing the communication link with OMNIC.

 Note The source application must be running before the ExecuteApp
statement is executed. Unlike ExecuteOMNIC, ExecuteApp will not
automatically start the application if it is not running. If the
application is not running, the ErrOMNIC function will return the
Visual Basic error code 282.

 Example: This example uses ExecuteApp to copy the contents of the cell in
row one, column one of the active Microsoft Excel® spreadsheet to
the contents of the cell in row two, column two.

 ExecuteApp (“Excel|[Book1]Sheet1”, “[Copy(““R1C1””, ““R2C2””)]”)
 ErrMsgBox()

88 Thermo Nicolet

ExecuteOMNIC This OmTalk routine sends a command to OMNIC.

 Syntax: ExecuteOMNIC (<string expression>)
 Remarks: The ExecuteOMNIC statement takes an OMNIC command as its

single argument. This argument must contain the exact text of the
command and any associated arguments that you want OMNIC to
execute.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether ExecuteOMNIC was
successful. ErrOMNIC returns an integer value of zero if OMNIC
carried out the command. If the command was not successful,
ErrOMNIC returns the Visual Basic error code.

 Example: This Visual Basic.NET example uses ExecuteOMNIC to collect a
sample spectrum. If an error occurs, it is displayed by ErrMsgBox.

 ExecuteOMNIC (“CollectSample”)
 ErrMsgBox()
 Example: This Visual Basic 6.0 example uses ExecuteOMNIC to collect a

sample spectrum. If an error occurs, it is displayed by ErrMsgBox.
Note that the parameters are not enclosed in parentheses when using
Visual Basic 6.0.

 ExecuteOMNIC “CollectSample”
 ErrMsgBox

Macros\Pro User’s Guide 89

FindOMNICData This OmTalk routine retrieves the pathname of the Data directory for
the current version of OMNIC.

 Syntax: FindOMNICData
(<DataDirectory>,<OmnicName>,<EZOmnicName>)

 Remarks: The FindOMNICData statement has three arguments.
● DataDirectory - The root directory for storing OMNIC data.
● OMNICName - The name of the OMNIC application,

omnic32.exe for example.
● EZOmnicName - The name of the EZ OMNIC application

ezomnic32.exe for example.
 The FindOMNICData command is typically used to retrieve the

pathname of the OMNIC Data Directory. This is the root path to all
OMNIC directories used to store data, such as OMNIC spectra. For
OMNIC 6.x installations, the path is usually
C:\MY DOCUMENTS\OMNIC.

 Example: This example uses FindOMNICData to retrieve the pathname of the
OMNIC data directory.

 Dim DataDirectory as string
 Dim OmnicName as string
 Dim EZOmnicName as string
 FindOMNICData (DataDirectory,OmnicName,EZOmnicName)

90 Thermo Nicolet

GetApp This OmTalk routine returns the current value of a parameter or
object property in a Windows application other than OMNIC.

 Syntax: GetApp(<Application|Topic>, <Parameter>)
 Remarks: The GetApp function uses these arguments:

● Application|Topic - A string expression that is the name of the
application, the pipe char | (char code 124), and the topic you
want to communicate with. Make sure there are no spaces in this
string expression. This is the server or source application
referred to in the Visual Basic documentation.

● Parameter - A string expression that is the name of the parameter
or object property whose value you want to get.

 GetApp returns a string data type that contains the current value of
the requested parameter or object property if the command was
successful. If GetApp is unsuccessful, it returns an empty string
value (““).

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether GetApp was successful.
ErrOMNIC returns an Integer value of zero if the source application
supplied the requested parameter or object property value. If the
request was not successful, ErrOMNIC returns the appropriate
Visual Basic error code.

 Continue to use the GetOMNIC function rather than this one if you
are working with OMNIC. GetOMNIC is optimized to do a better
job of managing the communication link with OMNIC.

 Note The application must be running before the GetApp function is
executed. Unlike GetOMNIC, GetApp will not automatically
start the application if it is not running. If the application is not
running, the ErrOMNIC function will return the Visual Basic
error code 282.

 (Continued on next page)

Macros\Pro User’s Guide 91

 Example: This example uses GetApp to obtain the current
value of the cell in row two, column three of the Microsoft Excel
spreadsheet Sheet1 of workbook Book1.

 Dim lvResult As String
 lvResult = GetApp(“Excel|[Book1]Sheet1”, “R2C3”)
 If ErrOMNIC() = 0 Then
 MsgBox (“The value of the cell = “ & lvResult)
 Else
 ErrMsgBox
 End If

92 Thermo Nicolet

GetItem This OmTalk routine returns the value of an item in a list as a String
data type.

 Syntax: GetItem(<list string>, <item number>)
 Remarks: The GetItem function uses these arguments:

● list string - A string expression containing a list of separated
values. Assumes items are separated by the list separator
character specified in the International section of the Windows
Control Panel application.

● item number - An integer expression that is the item number in
the list you want.

 This function (and also the ItemCount and Pop functions) is useful
when you want to obtain specific items from the list of values
returned by the Result Array OMNIC parameter.

 Example: This example obtains the list of results from a noise calculation and
picks out the third value, which is the peak-to-peak noise value.

 Dim lvList As String
 Dim lvNoise As String
 ExecuteOMNIC (“CalculateNoise”)
 If ErrOMNIC() = 0 Then
 lvList$ = GetOMNIC(“Result Array”)
 lvNoise = GetItem(lvList$, 3)
 MsgBox “The peak-to-peak noise level = “ & Format$(lvNoise, “0.0000”)
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 93

GetMVVal This OmTalk routine returns the current value of a Macros\Basic
macro variable.

 Syntax: GetMVVal(<Macro variable number>)
 Remarks: The GetMVVal function takes a long expression as its single

argument. You must specify the number of the macro variable whose
value you want to obtain. This value must be between 1 and 65535
for Macros\Basic 4.0 or higher and between 1 and 100 for
Macros\Basic 3.0 or lower. Do not include the mv prefix. GetMVVal
returns a string data type that contains the current value of the
requested macro variable if the command was successful. If
GetMVVal is unsuccessful, it returns an empty string value (““).

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether GetMVVal was
successful. ErrOMNIC returns an integer value of zero if the
Macros\Basic macro supplied the requested object value. If the
request was not successful, ErrOMNIC returns the Visual Basic
error code.

 Example: This example uses GetMVVal to obtain the current value of macro
variable mv3.

 Dim lvVal As String
 lvVal = GetMVVal(3)
 If ErrOMNIC() = 0 Then
 MsgBox (“The current value of mv3 = “ & Format(lvVal, “0.00”))
 Else
 ErrMsgBox
 End If

94 Thermo Nicolet

GetOMNIC This OmTalk routine returns the value of an OMNIC parameter.

 Syntax: GetOMNIC(<Parameter name>)
 Remarks: The GetOMNIC function takes a string expression as its single

argument. You must specify the name of the OMNIC parameter
whose value you want to obtain. The parameter name argument must
contain a group name followed by a space and the parameter name.

 GetOMNIC returns a String data type that contains the value of the
requested parameter if the command was successful. If GetOMNIC
is unsuccessful, it returns the text “#ERRORn#”, where n is the
Visual Basic error code, Err.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether GetOMNIC was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested parameter value. If the request was not
successful, ErrOMNIC returns the Visual Basic error code.

 Example: This example uses GetOMNIC to obtain the result of a noise
calculation.

 ExecuteOMNIC (“CalculateNoise”)
 If ErrOMNIC() = 0 Then
 noise$ = GetOMNIC(“Result Current”)
 Else
 ErrMsgBox
 End If

Macros\Pro User’s Guide 95

GetOMNICName This OmTalk routine retrieves the full application name from
OMNIC. Use it to determine which version of OMNIC or EZ
OMNIC is currently running.

 Syntax: GetOMNICName ()
 Remarks: The GetOMNICName statement has no argument.
 Example: This example uses GetOMNICName to retrieve the name of the

current version of OMNIC.
 dim szOmnicName as string
 szOmnicName=GetOMNICName ()

GetOMNICVersion This OmTalk routine returns the version number of OMNIC as a
string.

 Syntax: GetOMNICVersion (<avFormat>)
 Remarks: The GetOMNICVersion statement has a single argument which can

be used to control the format of the returned version number.
● avFormat = 0 - Returns the version number in native format with

major and minor revisions separated by decimals. Example:
5.0.0.1

● avFormat = 1 - Returns the version number as a floating point
number with minor revisions concatenated. Example: 5.001

 Example: This example uses GetOMNICVersion to retrieve the version
number in the native format.

 dim lvVal as String
 lvVal=GetOMNICVersion (0)

96 Thermo Nicolet

GetSpecCollectTime This OmTalk routine returns a string that indicates the date and time
when the currently selected spectrum was collected.

 Syntax: GetSpecCollectTime(<format>)
 Remarks: The argument <format> is an integer that determines the format of

the returned date and time as follows.
● 1 - Returns a string containing a date and time in the format

designated on the Date tab of the Regional Settings option in
your computer’s control panel.

● 2 - Returns a string containing the date and time in the same
format as shown in the OMNIC spectrum collection and
processing information.

 Example: This example uses GetSpecCollectTime to display the time the
selected spectrum was collected.

 Dim lvTime As String
 lvTime = GetSpecCollectTime(1)
 MsgBox (lvTime)

Macros\Pro User’s Guide 97

GetSpecData This OmTalk routine obtains numeric spectral data from an OMNIC
spectrum and places it in an array.

 Syntax: GetSpecData (<firstX>, <lastX>)
 Remarks: The GetSpecData statement uses these arguments:

● firstX - A numeric expression that is the one boundary of a
spectral region.

● lastX - A numeric expression that is the other boundary of a
spectral region.

 Both firstX and lastX should have the same unit as the X-axis.
 GetSpecData returns the spectral data into the global array

SpecData(). GetSpecData also sets the following global variables:
● GetSpecNum - The number of data points returned.
● GetSpecFirstX - The X-axis value of the first point in

SpecData().
● GetSpecLastX - The X-axis value of the last point in SpecData().
● GetSpecIncrement - The data point spacing of SpecData() in X-

axis units.
 The variables above are declared as string data types. The

SpecData() array is defined as a single data type.You do not need to
define these variables in your code.

 Use the function ErrOMNIC to test whether GetSpecData was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested spectral data. If the request was not
successful, ErrOMNIC returns the Visual Basic error code.

 (Continued on next page)

98 Thermo Nicolet

 Example: The following example uses GetSpecData to obtain the spectral data
from the region from 1620 to 1600 cm-1. A message box displays the
number of data points returned and the value of the first data point.

 Dim tex as String
 GetSpecData (1620, 1600)
 if ErrOMNIC() = 0 Then
 tex = “Number of data points returned = “ + GetSpecNum()
 tex = tex + Chr(13) & Chr(10) & “1st point X value =”

 & GetSpecFirstX()
 tex = tex & Chr(13) & Chr(10) & “1st point Y value =”

 & SpecData(1)
 MsgBox (tex)
 Else
 ErrMsgBox()
 End If

Macros\Pro User’s Guide 99

GetVal This OmTalk routine returns the numeric value corresponding to the
word following the search string in a text string. This function has
been made obsolete by use of the GetItem function in conjunction
with the OMNIC parameter Result Array. See the Get Item function.

 Syntax: GetVal(<text string> <search string>)
 Remarks: The GetVal function uses these arguments:

● text string - The string expression being searched.
● search string - The string expression being sought.

 The GetVal function always returns a Double data type. If the search
string is not found in the text string, a value of zero is returned.
GetVal ignores any “:” or “(“ characters that may occur between the
search string and the value that follows it.

 The format for OMNIC text returned via the Result Current
parameter is the same as that shown in the OMNIC readout or dialog
boxes. For example, the CorrectedPeakArea command sets Result
Current to “Area: 19.289 Uncorrected: 25.157 Region: (1468.346,
1423.154) Baseline: (1468.846, 1415.667)”.

 Example: This example uses GetVal to extract the values of the minimum and
maximum from the result string of the OMNIC MinMax command.
Note that the colon following the search string is optional.

 Dim result as String
 ExecuteOMNIC (“minmax”)
 ErrMsgBox()
 result = GetOMNIC(“Result Current”)
 ErrMsgBox()
 min = GetVal(result, “Min:”)
 max = GetVal(result, “Max”)

100 Thermo Nicolet

ItemCount This OmTalk routine returns the number of items in a list as an
integer data type.

 Syntax: ItemCount(<list string>)
 Remarks: The ItemCount function takes a string expression as its single

argument. This expression is a list of separated values. ItemCount
assumes items are separated by the list separator character specified
on the Number tab of the Regional Settings application, located in
the Windows Control Panel folder. ItemCount returns an integer
data type that is the number of items in the list string. If the list
string argument is empty, ItemCount returns a value of zero. This
function (and also the GetItem and Pop functions) is useful when
you want to obtain specific items from the list of values returned by
the Result Array OMNIC parameter.

 Example: This example displays a table of results from a Find Peaks operation.
 Dim lvList As String
 Dim lvTable As String
 Dim lvCount As Integer
 Dim lvIndex As Integer
 Dim lvPeakPosition As Single
 Dim lvPeakValue As Single
 ExecuteOMNIC “PeakPick 0.25 50”
 If ErrOMNIC() = 0 Then
 lvList = GetOMNIC(“Result Array”)
 lvCount = ItemCount(lvList)
 For lvIndex = 5 To lvCount Step 2
 lvPeakPosition = GetItem(lvList, lvIndex)
 lvPeakValue = GetItem(lvList, lvIndex + 1)
 lvTable = lvTable & Format(lvPeakPosition, “0.00”) & Chr(9)
 lvTable = lvTable & Format(lvPeakValue, “0.0000”) & Chr(13)

 & Chr(10)
 Next lvIndex
 MsgBox (lvTable, 64, “Find Peaks Result”)
 Else
 ErrMsgBox()
 End If

Macros\Pro User’s Guide 101

LoadOmTalk This OmTalk routine is used to load OmTalk.NET when starting an
application.

 Syntax: LoadOmTalk()
 Example: This example loads the OmTalk.NET service so that it can be used.
 Private Sub Form_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load
 LoadOmTalk()
 End Sub

102 Thermo Nicolet

Pop This OmTalk routine returns the first item in a list and removes this
item from the list.

 Syntax: Pop(<list string>)
 Remarks: The Pop function takes a string expression as its single argument.

This expression is a list of separated values. Pop assumes items are
separated by the list separator character specified on the Number tab
of the Regional Settings application, located in the Windows Control
Panel folder.

 Pop returns a string data type that is the value of the first item in the
list string. If the list string argument is empty, Pop returns a null
string value (““).

 This function is useful when you want to process items from the list
of values returned by the Result Array OMNIC parameter. See also
the functions ItemCount and GetItem.

 Example: This example stores the results of a Quantify operation in the array
lvConc. Note how the array lvConc is dynamically allocated. This
lets this code work for any number of results up to 40 components.

 Dim lvQuantResult As String
 Dim lvConc() As Single
 Dim lvVal As String
 Dim lvIndex As Integer
 ExecuteOMNIC “Quantify”
 lvQuantResult = GetOMNIC(“Result Array”)
 If (ErrOMNIC() = 0) Then
 ReDim lvConc(40)
 lvIndex = 0
 lvVal = Pop(lvQuantResult)
 While (lvVal <> ““)
 lvIndex = lvIndex + 1
 lvConc(lvIndex) = lvVal
 lvVal = Pop(lvQuantResult)
 End While
 ReDim Preserve lvConc(lvIndex)
 End If

Macros\Pro User’s Guide 103

SetApp This OmTalk routine sets the value of a parameter or object property
in a Windows application other than OMNIC.

 Syntax: SetApp (<Application|Topic>, <Parameter>, <Value>)
 Remarks: The SetApp statement uses these arguments:

● Application|Topic - A string expression that is the name of the
application, the pipe char | (char code 124), and the topic you
want to communicate with. Make sure there are no spaces in this
string expression. This is the server or source application
referred to in the Visual Basic documentation.

● Parameter - A string expression that is the name of the parameter
or object property whose value you want to set.

● Value - A string expression that is the value you want to assign
to the parameter or object property.

 This statement opens a DDE conversation with the source
application, sets the parameter or object property value, and then
closes the DDE conversation.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether SetApp was successful.
ErrOMNIC returns an integer value of zero if the application set the
parameter or object property to the specified value. If SetApp was
not successful, ErrOMNIC returns the appropriate Visual Basic error
code.

 Continue to use the SetOMNIC statement rather than this one if you
are working with OMNIC. SetOMNIC is optimized to do a better
job of managing the communication link with OMNIC.

 Note The application must be running before the SetApp statement is
executed. Unlike SetOMNIC, SetApp will not automatically start the
application if it is not running. If the application is not running, the
ErrOMNIC function will return the Visual Basic error code 282.

 (Continued on next page)

104 Thermo Nicolet

 Example: This example sets the value of the cell in row two, column three to
0.153 in the Microsoft Excel spreadsheet with the name Sheet1. If
Excel is not running, the Visual Basic Shell function is used to start
Excel.

 Dim lvHwnd As Integer
 SetApp (“Excel|[Book1]Sheet1”, “R2C3”, “.153”)
 If (ErrOMNIC() <> 0 Then)
 If ErrOMNIC() = 282 Then
 lvHwnd = Shell(“excel.exe”, 1)
 SetApp (“Excel|[Book1]Sheet1”, “R2C3”, “.153”)
 Else
 ErrMsgBox()
 End If
 End If

Macros\Pro User’s Guide 105

SetMVVal This OmTalk routine sets the value of a Macros\Basic macro
variable.

 Syntax: SetMVVal(<Macro variable number>, <Value>)
 Remarks: The SetMVVal statement uses these arguments:

● Macro variable number - A long expression that is the number of
the macro variable whose value you want to set. Do not include
the mv prefix.

● Value - A string expression that is the value you want to assign
to the macro variable.

 The macro variable number must be between 1 and 65535 for
Macros\Basic 4.0 or higher or between 1 and 100 for Macros\Basic
3.0 or lower.

 It is not necessary for the macro variable to be declared in the
Macros\Basic macro, since this routine will create the macro
variable definition. This is useful when you want to pass values from
your Visual Basic application back to a Macros\Basic macro.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether SetMVVal was
successful. ErrOMNIC returns an integer value of zero if the
Macros\Basic macro set the macro variable to the specified value. If
SetMacro was not successful, ErrOMNIC returns the Visual Basic
error code.

 (Continued on next page)

106 Thermo Nicolet

 Example: This example evaluates the first component value from a Quant
result and then uses SetMVVal to set the value of macro variable
mv3 to an appropriate text message.

 Dim lvQuantResult As String
 Dim lvText As String
 ExecuteOMNIC “Quantify”
 lvQuantResult = GetOMNIC(“Result Array”)
 If ErrOMNIC() = 0 Then
 If .5 < Pop(lvQuantResult) < 1 Then
 lvText = “Product is within acceptable limits.”
 Else
 lvText = “Product is out of spec.”
 End If
 SetMVVal 3, lvText
 End If
 ErrMsgBox

Macros\Pro User’s Guide 107

SetOMNIC This OmTalk routine sets an OMNIC parameter to a value that you
specify.

 Syntax: SetOMNIC (<Parameter name>, <Value>)
 Remarks: The SetOMNIC statement uses these arguments:

● Parameter name - A string expression that is the name of an
OMNIC parameter whose value you want to set. The parameter
name argument must contain a group name followed by a space
and the parameter name.

● Value - A string expression that is the value to set the parameter
to.

 Use the ErrMsgBox statement to display an error message that
describes any error that may have occurred.

 Use the function ErrOMNIC to test whether SetOMNIC was
successful. ErrOMNIC returns an integer value of zero if OMNIC
set the parameter to the specified value. If SetOMNIC was not
successful, ErrOMNIC returns the Visual Basic error code.

 Example: This Visual Basic.NET example uses SetOMNIC to set the spectral
region before a noise calculation. It then obtains the result of the
noise calculation.

 Dim noise as String
 SetOMNIC (“Display RegionStart”, 2250.0)
 ErrMsgBox()
 Dim lvEnd as Integer
 lvEnd = 2200
 SetOMNIC (“Display RegionEnd”, CStr(lvEnd))
 ErrMsgBox()
 ExecuteOMNIC (“CalculateNoise”)
 If ErrOMNIC() = 0 Then
 noise = GetOMNIC(“Result Current”)
 Else
 ErrMsgBox()
 End If

 Note If you are using Visual Basic 6.0, do not include parentheses around
the parameters for SetOMNIC or ExecuteOMNIC.

108 Thermo Nicolet

SetSpecData This OmTalk routine sets the numeric values of spectral data in an
OMNIC spectrum. For 32-bit Visual Basic projects, you must use
this routine.

 Syntax: SetSpecData
 Remarks: The SetSpecData statement does not have any arguments.
 SetSpecData sets the spectral data in the currently selected OMNIC

spectrum to the values contained in the global array SpecData(). The
following global variables specify the number of data points and
region of data to be set:
● GetSpecNum - The number of data points to be set.
● GetSpecFirstX - The X-axis value of the first point in

SpecData().
● GetSpecLastX - The X-axis value of the last point in SpecData().

 The above variables and the SpecData() array are defined in the
OmTalk Declarations section as single data types. You do not need
to define these variables in your code.

 Use the function ErrOMNIC to test whether SetSpecData was
successful. ErrOMNIC returns an integer value of zero if OMNIC
supplied the requested spectral data. If the request was not
successful, ErrOMNIC returns the Visual Basic error code.

 Example: This example uses SetSpecData to fit a straight line across the
spectral data from the region 2400 to 2200 cm-1.

 GetSpecData (2400, 2200)
 increment=(SpecData(GetSpecNum()) - SpecData(1)) / (GetSpecNum()-1))
 For i = 2 To GetSpecNum()
 SpecData(i) = SpecData(1) + increment*(i-1)
 Next i
 SetSpecData()

Macros\Pro User’s Guide 109

StartOMNIC This OmTalk routine runs OMNIC if it is not already running.

 Note You do not need to call StartOMNIC before using the other OmTalk
routines. If OMNIC is not already running when you try to
communicate with it, it will be started automatically. Use
StartOMNIC only if you must launch OMNIC with a specific
window style or argument string. If OMNIC is already running when
you call StartOMNIC, you may get an error message.

 Syntax: StartOMNIC(<Window style> <Argument string>)
 Remarks: The StartOMNIC function has these arguments:

● window style - An integer corresponding to the style of the
OMNIC window.

● argument string - A string expression containing any arguments
or command line switches.

 The following table identifies the possible values for the window
style and the style of window that occurs as a result:
● 1 - The normal window with focus.
● 2 - Minimized with focus.
● 3 - Maximized with focus.
● 4 - The normal window without focus.
● 7 - Minimized without focus.

 Set the argument string argument to an empty string if you do not
use any command line options. Command line options are:
● <filename> - The name of a valid spectral data file that is to be

displayed in the initial window.
● -b<benchfile> - Use benchfile instead of real bench.
● -i - Run in invisible mode; that is, with no user interface.
● -l <x,y> - The location of the upper-left corner, in pixels.
● -s<width,height> - The width and height, in pixels.

(Continued on next page)

110 Thermo Nicolet

 If the StartOMNIC function is successful in starting OMNIC, it
returns a Long data type task identification (ID) for OMNIC. The
task ID is a unique number that identifies OMNIC. If StartOMNIC is
unsuccessful in starting OMNIC, Visual Basic generates an error
message.

 Example: These examples use StartOMNIC to launch OMNIC. In the first
example, the OMNIC window is minimized to an icon and the
Visual Basic application retains the focus. In the second example,
the OMNIC window is displayed in the upper-left corner of the
screen, 820 wide by 520 high.

 i = StartOMNIC(7, ““)
 i = StartOMNIC(1, “-10,0 -s820,520”)

Macros\Pro User’s Guide 111

Strip This OmTalk routine returns a string with any leading and trailing
white space characters removed.

 Syntax: Strip (<text string>)
 Remarks: The Strip function takes a text string as its single argument. The

function removes any carriage return, line feed, tab or space
characters from the start and end of the string, and then returns the
text string.

 Example: This example removes white space characters from the start and end
of a text string but leaves embedded white space alone.

 Dim lvTex as String
 Dim lvRetVal as String
 lvTex = “ This is “&Chr(9) & “Column 1” & Chr(13) & Chr(10)
 lvRetVal = Strip(lvTex)

UnloadOmTalk This OmTalk routine is used to unload OmTalk.NET when you have
finished using an application and are ready to close the application.

 Syntax: UnloadOmTalk()
 Example: This example will unload OMTalk.NET and, if necessary, make

resources that are currently being used available for other
applications.

 Private Sub Form_Closed(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles MyBase.Closed

 UnloadOmTalk()
 End Sub

112 Thermo Nicolet

The OMNIC DDE Application

OMNIC DDE is a stand-alone application for sending commands to
OMNIC and for setting and getting the values of OMNIC parameters
via dynamic data exchange.

The application contains lists of OMNIC commands and parameters
that are accessible via DDE. It also indicates the appropriate syntax
and parameter values that may be used. A text search feature is
provided which can assist you in locating a specific parameter or
command in case you do not know the exact name or syntax.

This list may not include all of the commands and parameters
described in the documentation. If you can not find the command or
parameter you want, you can type it into the appropriate field.

Macros\Pro User’s Guide 113

General features The OMNIC DDE application lets you test DDE commands and
parameters. This is useful when you are writing or debugging Pro
macros, because it shows you the exact syntax of the results.

The features of the OMNIC DDE application can be grouped into
four categories:

• Parameters (group, parameter and value).
• Commands (command and keywords).
• Command buttons.
• Results.

114 Thermo Nicolet

Parameters (group,
parameter and value)

Each OMNIC parameter belongs to a specific group. These groups
are a way of organizing related parameters. For example, all data
collection parameters are located in the Collect group. To access an
OMNIC parameter, you must specify both the group name and the
parameter name.

The Group drop-down list box displays the parameter groups
recognized by OMNIC. To access the parameters in a specific group,
choose a group from the Group list. The contents of the Parameter
drop-down list box will change to display the parameters in the
chosen group.

The Value drop-down list box displays the values permitted for the
chosen parameter. Choose the appropriate value you want to use
from this list. This box will be empty for many parameters; in this
case, you may enter any value you wish. See the Macros\Pro on-line
help for the type of value to use with each parameter.

The items listed in each drop-down list box are sorted alphabetically.
You can choose an item by scrolling through the list or by typing the
first few characters of an item while the list is displayed.

The Macros\Pro on-line help contains a description of every
parameter available, but the drop-down lists may not include all of
these. If you cannot find the parameter you want, you can type it into
the appropriate field.

Macros\Pro User’s Guide 115

Commands (commands
and keywords)

Each OMNIC command is listed in the Command drop-down list
box along with any arguments or options that the command
recognizes. The commands are sorted alphabetically. You can
choose a command by scrolling through the list or by typing the first
few characters of the command while the list is displayed.

The Macros\Pro on-line help contains a description of every
command available, but the drop-down lists may not include all of
these. If you cannot find the command you want, you can type it into
the appropriate field.

Some commands require arguments. If arguments are required, a
description of them is shown after the command name enclosed in
angle brackets. Here is an example:

DeleteAnnotation <RegionStart> <RegionEnd>

The DeleteAnnotation command requires two arguments:
RegionStart and RegionEnd. You must substitute values for these
two arguments; these values must be separated by a space. An easy
way to enter values for the arguments is to double-click the
argument in the Command box and type the value. This will
automatically substitute the value over the argument description
place holder. For example, the following command deletes all
annotation in the region from 4000 to 2000 cm-1 (assuming a
wavenumber spectrum is currently selected).

DeleteAnnotation 4000 2000

Some commands have optional arguments. These arguments are
enclosed in square brackets. Here is an example:

CoaddRegion [<StartTime> <EndTime> [<WindowTitle>]]

Optional arguments do not need to be provided. If you choose not to
provide them, you must delete the optional argument place holders
from the Command box. Do this by selecting all the text between,
including the square brackets, and then pressing the Delete key.

116 Thermo Nicolet

In the previous example, there are two sets of optional arguments as
indicated by the nested set of square brackets. This example can be
interpreted as follows. If you provide a value for StartTime, you
must also provide a value for EndTime because both of these
arguments are within a set of square brackets. The WindowTitle
argument is optional if you specify StartTime and EndTime. If you
provide a value for WindowTitle, you must also provide values for
StartTime and EndTime. You cannot specify a value for just the
WindowTitle argument, because it is nested within the other option.

For example, the following commands are valid:

CoaddRegion

CoaddRegion 2.05 4.30

CoaddRegion 2.05 4.30 “Coadded Result”

The following command is not valid because no StartTime and
EndTime values were provided:

CoaddRegion “Coadded Result”

Some commands have arguments that are not enclosed in angle
brackets and are separated by a vertical bar, |. Here is an example:

OtherCorrections Dispersion|ATR

This notation means that you must choose one of the keywords
separated by the vertical bar. You must delete the vertical bar and
the keyword that you do not want to use.

Keywords are optional command arguments that affect the behavior
of the command when it is executed. To add a keyword to the
command, click the appropriate check box after choosing a
command from the Command drop-down list box.

Macros\Pro User’s Guide 117

The available kinds of keywords are explained below.

Invoke lets you specify interactive operation for a command. When
used with commands like CollectSample or Subtract, the interactive
versions of these commands are “invoked.” For example, the Collect
Sample window appears during data collection, and the Subtract
window appears allowing you to perform an interactive subtraction.
When used with commands like Average, the result will be
displayed in a dialog box even though there is no equivalent OMNIC
menu command.

When the Invoke keyword is used with a command, execution of
code pauses until the operator closes the interactive window or
dialog box. In other words, the DDE conversation that initiates the
command is not completed until the window or dialog box is closed.

The Invoke keyword also affects how error messages are handled. If
a command is used without this keyword, errors are stored and must
be retrieved by getting the value of the parameter Result Error.
When the Invoke keyword is used, these errors are displayed to the
operator and a response is required.

Auto sets up data collection so that no operator prompts for entering
a title and preparing for data collection are displayed. This check
box is enabled only for data collection commands that allow this
option. The Invoke keyword must always be selected when the Auto
keyword is selected.

Shift is used with the Select command to cause the specified
spectrum to be selected in addition to the currently selected spectrum
or spectra. This keyword is also used with the PeakHeight command
to seek the peak closest to the specified peak location.

118 Thermo Nicolet

Polling causes OMNIC to complete, or close, the DDE conversation
as soon as the command is initiated. Without this keyword, OMNIC
holds on to the DDE conversation until the command has finished
executing, and then closes the conversation.

This keyword may be used with data collection commands to initiate
a data collection and then immediately return. This allows your
program to continue running while OMNIC proceeds with data
collection.

This keyword gets its name from the polling mechanism you use in
your code to test to see if the command has completed. Test the
appropriate MenuStatus group parameter to see if its value is
Enabled or Disabled.

For example, the MenuStatus CollectSample parameter remains
Disabled until data collection has finished, then its value becomes
Enabled.

Result contains the results of the Set Parameter, Get Parameter and
Send Command buttons.

For the Get Parameter button, this field contains the current value of
the designated OMNIC parameter if the command is successful. If
the command fails, an error message is displayed in this field. The
format of the result is exactly the same as that which would be
obtained via the GetOMNIC function in OmTalk. You may find this
useful for experimenting with parameters so you can see how to deal
with their results in your Macros\Pro code. Note that the Result field
is editable; you may cut or copy any text in this field to the
Clipboard.

For the Set Parameter and Send Command buttons, the result will be
“OK” if the operation was successful, or an error message if the
operation was unsuccessful.

Macros\Pro User’s Guide 119

The error or failure messages are somewhat generic, something like
“Foreign application won’t perform DDE method or operation.” The
most prevalent reasons for failure are the following:

• Improper syntax in the Value drop-down list box when using the

Set Parameter button.

• Failure to remove or substitute valid values for argument or

option place holders in the Command drop-down list box.

Refer to the Macros\Pro on-line help system to see what values
OMNIC recognizes for each parameter and command.

120 Thermo Nicolet

Command buttons These are the buttons in the application that carry out a specific
action.

Find displays a dialog box that assists you in locating a specific
command or parameter. Use this feature when you don’t know the
exact name of a command or parameter or the group to which a
parameter belongs.

For example, suppose you want to find the parameter that returns
error information. Type “error” in the Text To Find box, select
Parameter in the What To Search box and click the Find button. The
application searches all parameter names until it finds one
containing “error”. The first occurrence is the parameter Collect
CorrError. This parameter is displayed in the Group and Parameter
boxes with the matching text highlighted. To continue the search,
click the Repeat Find button. The search continues and finds the next
parameter, Result Error. This is the parameter we want, so you can
click the Cancel button in the Find dialog box to close it.

Use the Find button to repeat the search of all parameters or
commands; use Repeat Find to continue the search after the last
occurrence.

The search is not case sensitive; this means “error” will match both
“error” and “Error”.

Macros\Pro User’s Guide 121

Other functions The OMNIC DDE application also uses these buttons.

Quit exits the OMNIC DDE application.

Set Parameter sets an OMNIC parameter to the value specified in
the Value drop-down list box. If the operation is successful, “OK” is
displayed in the Result field. If the operation fails, the reason is
displayed in the field.

Get Parameter obtains a parameter’s value from OMNIC after you
have selected a parameter. The current value of the selected
parameter is displayed in the Result field.

Send Command executes the command exactly as it appears in the
Command drop-down list box along with the selected keywords.
You must have already substituted values for any argument or option
place holders in the command string. The result of the command is
displayed in the Result field.

122 Thermo Nicolet

Messages This section explains the various messages you may encounter when
using OMNIC DDE.

• “No match found.”

This message is displayed when you click the Find button in the
Find dialog box, and there are no parameters or commands that
contain the text you have entered in the Text To Find box.

• “No additional matches found.”

This message appears when you click the Repeat Find button in
the Find dialog box, and there are no additional parameters or
commands that contain the text you have entered in the Text To
Find box. When you click OK to close this message, the last
parameter or command that was found is displayed in the
Parameter or Command drop-down list box.

• “Executing command...”

This message is displayed in the Result field while OMNIC is
executing a command, after you click the Send Command button
while in stand-alone mode. As soon as the command finishes and
the DDE conversation is closed, this message is overwritten with
the result of the command.

• “Setting parameter value...”

This message appears in the Result field while OMNIC is setting
the value of a parameter, after you click the Set Parameter button
while in stand-alone mode. As soon as the DDE conversation is
closed, this message is overwritten with the result of the Set
Parameter operation.

Macros\Pro User’s Guide 123

• “Reading parameter value...”

This message is displayed in the Result field while OMNIC is
getting the value of a parameter, after you click the Get
Parameter button while in stand-alone mode. As soon as the
DDE conversation is closed, this message is overwritten with the
value of the parameter.

• “No Macros\Pro software on this system. You may not use this
routine.”

This message appears if a licensed copy of Macros\Pro software
cannot be found on your system.

124 Thermo Nicolet

OMNIC Commands and Parameters

You can use the OMNIC commands and parameters within the
Visual Basic projects you create to automate OMNIC software
operations. The OMNIC command language provides all of the
OMNIC software commands and parameters plus commands and
parameters for performing additional operations.

 Note Versions of OMNIC earlier than OMNIC 6.0 may not support all of
the current commands and parameters.

 Note Complete descriptions of the DDE commands and parameters are

available in the on-line Macros/Pro help system.

The following list provides some general information about the
OMNIC command interface.

• The language is not case sensitive.

• Command arguments are separated by spaces. If an argument

includes embedded spaces, the argument must be enclosed in
double quotation marks.

• Setting parameters causes them to take effect immediately.

However, it is illegal to set bench or collect parameters while
data collection is in progress.

• The Invoke keyword may be used with any OMNIC command

that displays a window or dialog. It takes another OMNIC
command as its first argument. When the Invoke keyword
prefaces a command, the interactive form of the command is
invoked. When the macro is run, the macro pauses until the
operator closes the window or dialog box. For more information,
refer to the Invoke entry in the OMNIC commands section.

Macros\Pro User’s Guide 125

• If you want to pass long filenames that contain spaces to
OMNIC, enclose the filenames in double quotation marks.

• An invisible window is created when OMNIC is started. The

main purpose of this window is to hold spectra that haven’t been
placed in a visible window. For example, when a new spectrum
is collected, the result is a new spectrum that will belong to the
invisible window. This spectrum can then be displayed in a
visible window with the Display command. Alternatively, it can
be operated on in the window without ever appearing on the
screen if no OMNIC windows are open. For example, a sample
can be collected and the height of a peak calculated without ever
putting the sample in a visible window. The title of this window
is InvisibleDDEWindow.

126 Thermo Nicolet

Syntax rules If you are using the OMNIC commands and parameters with
OmTalk and Visual Basic, the following syntax rules apply:

• OMNIC commands are executed through the ExecuteOMNIC

statement.
• The command string, including all arguments, that follows the

ExecuteOMNIC statement must be enclosed in double quotation
marks. For example, to issue a CollectSample command and give
the spectrum the title “Polystyrene,” you would type:

 ExecuteOMNIC (“CollectSample Polystyrene”)

 If the arguments include embedded spaces, the argument must be

enclosed in two sets of double quotation marks in addition to the
entire command string being enclosed in double quotation marks.
For example, to issue a CollectSample command and give the
spectrum the title “This is Sample1,” you would type:

 ExecuteOMNIC (“CollectSample ““This is Sample1”””)

• Parameters are set with the SetOMNIC statement and retrieved

with the GetOMNIC function.

• The parameter string that follows the SetOMNIC statement or

the GetOMNIC function must be enclosed in double quotation
marks. For example, to set the Display XStart parameter to 4000
cm-1, you would type:

 SetOMNIC (“Display XStart”, 4000)

 To get the XStart value, you would type:

 XStart = GetOMNIC (“Display XStart”)

Macros\Pro User’s Guide 127

• If you perform an operation that produces a text result, such as
calculating the noise in a region, the result is obtained by using
the GetOMNIC function to retrieve the parameter Result
Current. The parameter Result Array may also be used to obtain
numerical values without the full text of the result. The items in
Result Array correspond to the numerical results in Result
Current. There is also a Result Error that can be read to get the
last error that occurred.

If you are using the OMNIC commands and parameters with
applications other than OmTalk and Visual Basic, the following
syntax rules apply:

• Commands must be enclosed in square brackets.

• Multiple commands can be passed in one message, separated by
semicolons (i.e., [command1;command2;command3]).

For example, Macro1 is a Microsoft Word macro that opens a
spectrum file, calculates noise between 2300 - 2000 cm-1, then
inserts the result into a Word document. Macro2 is a Microsoft
Excel macro that opens a spectrum file, calculates the height of the
peak closest to 1600 cm-1, then inserts the resulting peak location
and height into an Excel spreadsheet.

Sub Macro1()
 'Example Word macro.
 chan = DDEInitiate(App:=“OMNIC”, Topic:=“Spectra”)
 DDEExecute Channel:=chan, Command:=“[Import_
 ““c:\omnic\spectra\absorb.spa””]”
DDEPoke Channel:=chan, Item:=“Display RegionStart”,
Data:=“2000”

DDEPoke Channel:=chan, Item:=“Display RegionEnd”,
Data:=“2300”

 DDEExecute Channel:=chan, Command:=“[CalculateNoise]”
returnValue = DDERequest(Channel:=chan, Item:=“Result
Current”)

DDETerminate Channel:=chan
 ActiveDocument.Content.InsertAfter Text:=returnValue
End Sub

128 Thermo Nicolet

Sub Macro2()
 'Example Excel macro.
 channelNumber = Application.DDEInitiate(_
 app:=“OMNIC”, _
 topic:=“Spectra”)
 Application.DDEExecute channelNumber,_
 “[Import ““c:\omnic\spectra\absorb.spa””]”
Application.DDEExecute channelNumber,_
“[PeakHeight 1600 Shift]”

returnValue = Application.DDERequest(channelNumber,_
“Result Array”)

 Application.DDETerminate channelNumber
 Worksheets(“Sheet1”).Range(“A1”).Value = returnValue
End Sub

 Note There is a set of Atlµs™ commands that you use to create Pro
macros for the Atlµs application. For information about these
commands, including a complete list with descriptions, please see
the Macros\Pro on-line help.

Macros\Pro User’s Guide 129

Bench and Collect
parameters for step-

scan experiments

The Spectral Resolution, Points Before Peak, and Sample Spacing
parameters that appear in the Amplitude Modulation and Phase
Modulation setup screens correspond to the following OMNIC
Bench and Collect group parameters.

Setup Parameter Parameter Notes
Sample Spacing Bench SSP 1.0, 2.0, or 4.0 allowed
Spectral Resolution Collect

Resolution
0.125 - 32.0 cm-1
allowed

Points Before Peak Collect
PeakPosition

must be no greater than
32768/ (Resolution*SSP)

Other Bench group parameters that apply to step-scan experiments in
the usual way are: ADC, Aperture, BeamPath, BeamSplitter, Gain,
HighCutoff (limited by SSP), LowCutoff, and Source.

Other Collect group parameters usable in step-scan experiments are:
ApodizationFunction, AutoSave, BackgroundFileName,
BackgroundHandling (AfterTime and ThisBkg options only),
BaseName, BasePathName, DataCorrections, FinalFormat,
MaxBackgroundAge, NumPhaseDataPts (limited by PeakPosition),
NumPhaseTransformPts, PhaseCor, SequenceNum, and ZeroFill.

The following Bench group parameters are not used during step-scan
collects: BidirectionalScan, RapidScanState, and Velocity.

The following Collect group parameters are not used during step-
scan collects: Autogain (always False), Correlation, CorrError,
ExternalTrigger (always False), NumDataPts (calculated from
Resolution and SSP), NumScans (always 1), NumTransformPts
(calculated from NumDataPts and ZeroFill), and SaveInterferograms
(always True).

130 Thermo Nicolet

Macros\Pro Examples

We have provided you with a set of example macros on the
Macros\Pro software disk. These macros were installed in the
My Documents\OMNIC\PROMACS\EXAMPLE\VB# directory
when you installed the Macros\Pro software (where VB# represents
your version of Visual Basic). Each example is then stored in its own
directory.

These macros can be opened in Visual Basic if you want to view
them or if you want to copy code from the examples into your own
macros. Depending on the version of Visual Basic you are using,
you may get this message: “This file was saved in a previous
version of Visual Basic.” Click OK to save in the current Visual
Basic format.

This chapter provides brief descriptions of the contents and purpose
of each example macro provided with your Macros\Pro software.
For a detailed introduction to creating Pro macros using Visual
Basic, see the “Creating Pro Macros With Visual Basic” chapter.

 Note Some of the examples in this chapter use OMTALK.BAS and
OMTALK.FRM and are not compatible with Visual Basic.NET.
A Visual Basic.NET example can be found in the
My Documents\OMNIC\PROMACS\EXAMPLE\VBNET
directory.

Macros\Pro User’s Guide 131

Visual Basic
example 1:
EASY1.VBP

This is a simple Visual Basic project that opens two of the example
spectra that are installed as part of the standard OMNIC FT-IR
software and puts them into a spectral window that is set up as a
two-pane stack. The project includes the OMTALK files and a single
user form containing two buttons.

132 Thermo Nicolet

Visual Basic
example 2:
EASY2.VBP

This Visual Basic project sequentially opens five spectra, calculates
a peak area for each spectrum and then uses this area and a
calibration equation to determine the concentration of a component.
The example spectra are automatically installed with the Macros\Pro
software. The project consists of the two OmTalk files and a single
user form containing two buttons and a text field.

Macros\Pro User’s Guide 133

Visual Basic
example 3:
EASY3.VBP

This Visual Basic project demonstrates how the results obtained
from OMNIC through a Visual Basic program can be sent via DDE
to another program, in this case Microsoft Excel. For this program to
run properly, you must have Excel installed on your system in your
DOS path. The project also assumes that you do not have any files in
the XLSTART directory that are launched automatically when Excel
is started. The same area and concentrations are calculated as in the
example project EASY2.VBP, but in this case the results are sent to
the Excel spreadsheet.

134 Thermo Nicolet

Visual Basic
example 4:

COMMAND.VBP

This Visual Basic project demonstrates how text can be entered and
interpreted as commands and parameters that can then be sent to
OMNIC. A text line is created and the user can enter multiple
commands and parameters, followed by the Enter key. A function
call then breaks the string into text strings that are interpreted and
sent to OMNIC. The project, located in Command directory, consists
of the OMTALK files and a single user form that contains the
command entry text field and an Exit button. The command line
allows multiple commands and parameters to be entered on a single
line separated by spaces. Filenames must include extensions.

Macros\Pro User’s Guide 135

Visual Basic
example 5:

CONTROL.VBP

This Visual Basic project demonstrates how a special OMNIC
remote control operation panel can be developed. This type of
project can be used to create simple interfaces for operators. Besides
the normal OMTALK files, this program consists of four forms and
a global definition section. MAINFORM.FRM is the main control
form that has the OMNIC operation buttons. SCTIME.FRM contains
the choices for scan time, and SCANRES.FRM contains the choices
for resolution settings. SAVEDATA.FRM appears when the file is to
be saved on the disk. The data collection uses the Auto command
suffix in the OMNIC collection procedure, but the comments explain
how a custom collect, can be substituted.

Features you should note in this macro include the following:

• Use of Option Explicit in form declaration. This option forces

you to declare the type of all variables using the Dim statement.
This is good programming practice because it helps trap
potential bugs.

136 Thermo Nicolet

• Center form code in form_load procedure.

• Use of ErrOMNIC() and ErrMsgBox() procedures to check for

successful completion of OMNIC actions.

• Use of a procedure (SetValue) called by several actions (button

click and list box double-click). Note that this procedure is
declared as private, meaning it is available only to the form in
which it resides. Both the Resolution and Scan Time forms
contain a procedure named SetValue. This procedure is different
for each form and can be called only by other procedures in the
same form.

• Use of module (define.bas) to declare global variables and

Windows API (Application Programming Interface) functions.
These variables and procedures can be used by any form in the
project.

Macros\Pro User’s Guide 137

Visual Basic
example 6:

XYPEAK.VBP

This Visual Basic project demonstrates how an OMNIC spectrum
can be loaded automatically and saved as an X,Y pair file. This file
is then opened into Visual Basic arrays for manipulation. In this
example, a corrected peak height is calculated for the polystyrene
band around 1605 cm-1. The average absorbance in the baseline
region is calculated on both sides of the peak and used with the
midpoints of the baseline region (cm-1) positions to calculate the
equation of the line through the two points. The arrays are then
evaluated to find the peak maximum, and the maximum height is
corrected based on the equation developed using the baseline points.
In addition to the two OmTalk files there is one form with two
buttons, a spreadsheet and three text boxes.

This macro uses the grid32.ocx Active-X control.

138 Thermo Nicolet

Visual Basic
example 7:

GetData.VBP

This Visual Basic project demonstrates how data can be read directly
from the selected OMNIC spectrum via DDE. The range of data to
be read is defined using the OMNIC region tool. The data is
obtained using the OmTalk GetDataArray subroutine, which is
loaded into a Visual Basic spreadsheet and can be placed onto the
Clipboard. This project consists of the OmTalk files and a single
user form that contains four buttons, a spreadsheet and six text
boxes.

Features you should note in this macro:

• Uses the grid32.ocx Active-X control.

• Uses GetSpecData and SetSpecData procedures instead of

GetDataArray and SetDataArray. (GetDataArray and
SetDataArray can be used with 16-bit applications only. You
must use the GetSpecData and SetSpecData for 32-bit
applications.)

Macros\Pro User’s Guide 139

Visual Basic
example 8:

LIBRARY.VBP

This Visual Basic project details the use of a number of the special
library commands and parameters. The libraries are stored on the
disk as numbered files and referred to in OMNIC dialog boxes by
descriptive titles. This project, in the Library directory, creates a list
that relates the descriptive titles and the numerical filenames. In
addition to the two OMTALK files there is one form with two
buttons and a scrolling text box.

140 Thermo Nicolet

Visual Basic
example 9:

RAMANLIB.VBP

This Visual Basic project simplifies the building of custom Raman
libraries. Samples can be collected and added to create a new
Raman library or to expand an existing Raman library. In addition
to the two OMTALK files there is a single user form containing
three buttons. This example is in the Ramanlib directory.

Macros\Pro User’s Guide 141

Visual Basic
example 10:
RATIO.VBP

This Visual Basic project opens a Raman spectrum and calculates
three corrected peak heights. Two of the peak heights are then
ratioed to the third peak height. The ratios are put into text boxes and
can be compared directly or put into a calibrated routine to
determine what concentration is present. In addition to the two
OMTALK files there is one form with two buttons and two text
boxes.

This macro demonstrates how to tell Raman spectra from other types
using the RamanLaserFreq parameter.

142 Thermo Nicolet

Visual Basic
example 11:

SST.VBP

This Visual Basic project includes Nexus® 870 (or Magna-IR® 850
or 860) examples using OMTALK subroutines. Several phase
modulation step-scan spectral collections are performed at various
modulation frequencies. In addition to the two OMTALK files, there
is one form containing two buttons. This example is in the SST
directory.

Code in the macro traps for the case when this example is run on a
system that does not have SST™ software installed.

Macros\Pro User’s Guide 143

Visual Basic
example 12:

ZPDHOLD.VBP

This Visual Basic project includes Nexus 870 (or Magna-IR 850 or
860) examples using OmTalk subroutines. The moving mirror is
positioned at the interferogram peak location (ZPD). This facilitates
the alignment of external optics and adjustment of external
electronics for optimum performance during a step-scan data
collection. Spectra collected with this macro will exhibit strange
artifacts due to the parameters used to engage an extended hold time
at the interferogram peak. Perform a collection with proper
experimental parameters for valid spectra. In addition to the two
OmTalk files, there is one form containing three buttons, three text
boxes and two radio buttons.

144 Thermo Nicolet

Using OMNIC
QuantPad™ DDE

commands and
parameters

This section describes how to use some of the commands and
parameters that have interactions. Not all commands and parameters
are shown, only those requiring further explanation.

Accessing report
information

The information for the report is stored in an internal table in the
GSANAL parameter set. The individual elements of the table can be
accessed through the use of several commands and parameters.

Reading information from the table

1. Initialize the current set of information in the GSANAL

parameter set with the command:

 FirstReportComp

2. Remove the first set of information from the table by reading the

following parameters.

 ReportCompUse

3. Step to the next set of information in the table with the

command:

 NextReportComp

4. Repeat steps 2 and 3 for NumMethodComp times (A parameter

in GSANAL parameter set).

Macros\Pro User’s Guide 145

Updating the table with new information

1. If an element of the table needs to be changed, set the GSANAL
parameter CurReportComp to the element number in the list that
is to be changed.

2. Write the information to all of the parameters in the list. It is

important to update all of them at the same time.

 ReportCompUse

3. Save the new information into the table with the command:

 UpdateReportComp

146 Thermo Nicolet

Using Commands and Parameters With
Other Applications

Pro macros use the Dynamic Data Exchange (DDE) capabilities of
Windows and OMNIC to automate OMNIC software operations.
This manual has provided information on developing Pro macros
using Visual Basic and has described the use of the OmTalk routines
for handling the DDE interactions between Visual Basic and
OMNIC.

The OMNIC commands and parameters can be used with other
programs that support DDE. However, OmTalk can be used only
with Visual Basic. Therefore, all of the DDE interactions between
the programming language you choose and the OMNIC commands
and parameters must be handled using the programming language.
The following section provides a general introduction to DDE. For
detailed information on DDE, refer to the manual for the
programming language that you have chosen.

Macros\Pro User’s Guide 147

Dynamic data
exchange basics

This section describes the use of some of the commands and
parameters that have interactions. Not all commands and parameters
are shown, only those requiring further explanation.

Dynamic Data Exchange is defined as the form of interapplication
communications used by Microsoft Windows programs to support
the exchange of commands and parameters between applications.
This communication takes the form of a conversation that is similar
to the conversation between two people. A DDE conversation
establishes a temporary or permanent link between two Windows
applications. This link acts as a conduit for the exchange of
information between the connected applications. The exchanged data
can be information that is copied from one application to the other,
or commands for the other application to process.

In a DDE conversation the application that initiates the conversation
is known as the destination application. or simply the destination.
The application responding to the conversation is called the source
application This terminology may seem backward, but keep in mind
that the application that initiates the conversation usually wants
some information to be sent to it (destination of information) by the
responding application (source of information). An application may
be involved in several conversations at the same time.

To initiate a DDE conversation, the destination application sends a
message to Windows defining a source application that it wants to
communicate with and a topic for the conversation. The topic
defines the subject of the conversation and usually relates to some
unit of source application data. For OMNIC the topic is always
Spectra.

148 Thermo Nicolet

Windows applications that support DDE are always listening for
conversations that refer to them. When a source application receives
a request to have a conversation concerning a topic that it
recognizes, it responds by starting a conversation. Once the
conversation starts, the topic cannot be changed unless the
conversation is ended and a new one is initiated. During the
conversation the source and destination applications can exchange
information concerning items in a bi-directional manner. Items
consist of data or commands that are meaningful to both the source
and destination applications. The item can be changed by either the
source or destination during any given conversation.

There are many Windows compatible programming environments
that can be used with OMNIC via DDE. High level Windows
compatible languages such as Borland Turbo Pascal® for Windows
and Microsoft C can be used to create advanced macros that will
interact with OMNIC. You can also use the OMNIC commands with
the SmartPad® software from Softblox, Inc., that is included with the
OMNIC Utilities software.

Macros\Pro User’s Guide 149

Syntax rules for
DDE conversations

If you are using the OMNIC commands and parameters with other
applications, the following syntax rules apply:

• In DDE conversations, you must specify the name of the

application and the topic of the conversation. The application
name for OMNIC is “OMNIC”; the topic is “SPECTRA”.

• Commands must be enclosed in square brackets.

• Multiple commands can be passed in one message, separated by

semicolons (i.e., [command1;command2;command3]).

For example, Macro1 is a Microsoft Word macro that opens a
spectrum file, calculates noise between 2300 - 2000 cm-1, then
inserts the result into a Word document. Macro2 is a Microsoft
Excel macro that opens a spectrum file, calculates the height of the
peak closest to 1600 cm-1, then inserts the resulting peak location
and height into an Excel spreadsheet.

Sub Macro1()
 'Example Word macro.
 chan = DDEInitiate(App:=“OMNIC”, Topic:=“Spectra”)
 DDEExecute Channel:=chan, Command:=“[Import_
 ““c:\omnic\spectra\absorb.spa””]”
DDEPoke Channel:=chan, Item:=“Display RegionStart”,
Data:=“2000”

DDEPoke Channel:=chan, Item:=“Display RegionEnd”,
Data:=“2300”

 DDEExecute Channel:=chan, Command:=“[CalculateNoise]”
returnValue = DDERequest(Channel:=chan, Item:=“Result
Current”)

DDETerminate Channel:=chan
 ActiveDocument.Content.InsertAfter Text:=returnValue
End Sub

150 Thermo Nicolet

Sub Macro2()
 'Example Excel macro.
 channelNumber = Application.DDEInitiate(_
 app:=“OMNIC”, _
 topic:=“Spectra”)
 Application.DDEExecute channelNumber,_
 “[Import ““c:\omnic\spectra\absorb.spa””]”
Application.DDEExecute channelNumber,_
“[PeakHeight 1600 Shift]”

returnValue = Application.DDERequest(channelNumber,_
“Result Array”)

 Application.DDETerminate channelNumber
 Worksheets(“Sheet1”).Range(“A1”).Value = returnValue
End Sub

 Note There is a set of Atlµs commands that you use to create Pro macros
for the Atlµs application. For information about these commands,
including a complete list with descriptions, please see the
Macros\Pro on-line help.

Macros\Pro User’s Guide 151

.

152 Thermo Nicolet

Index

a ErrOMNIC
returning error values, 47, 84

error handling adding
checking errors with OmTalk routines, 47, 84 type libraries to Visual Basic 6.0 projects, 6
displaying error message boxes, 47, 84 type libraries to Visual Basic.NET projects, 8

arguments
optional command arguments, 116
requirements for commands, 116

Atlµs commands
described in help, 129, 151

Auto keyword, 118

b
Basic macros

determining if applications are rerun, 42
starting Visual Basic, 42

c
commands

argument example, 116
argument requirements, 116
optional arguments, 116
syntax rules for DDE conversations, 150
the Command list box, 116
typing into OMNIC DDE fields, 113
using with other applications, 147

d
DDE conversations

syntax rules for, 150
Dynamic Data Exchange

compatible programming environments, 149
described, 148
destination application, 148
initiating DDE conversations, 148
items, 149
source application, 148

returning error values, 47, 84
example macros

COMMAND.VBP, 135
CONTROL.VBP, 136
EASY1.VBP, 11, 132
EASY2.VBP, 133
EASY3.VBP, 134
GetData.VBP, 139
LIBRARY.VBP, 140
location, 2, 131
opening and using example macros, 131
RAMANLIB.VBP, 141
RATIO.VBP, 142
SST.VBP, 143
Visual Basic 6.0 pro macro, 12
Visual Basic.NET pro macro, 22
XYPEAK.VBP, 138
ZPDHOLD.VBP, 144

ExecuteOMNIC
sending commands to OMNIC, 46, 83

f
filenames

passing long filenames, 126
Find command button, 121

g
Get Parameter button, 119
GetArgStr

determining if applications are rerun, 42
determining macros first run, 47

GetDataArray
extracting spectra into Visual Basic arrays, 47, 84

e replacing for 32-bit applications, 47
GetOMNIC

ErrMsgBox enclosing strings in quotation marks, 127
displaying error message boxes, 47, 84 retrieving OMNIC parameters, 46, 83, 127

Macros\Pro User’s Guide 153

GetSpecData
extracting spectra into Visual Basic arrays, 47, 84

GetVal
accessing portions of parameter values, 46, 83

h
help

command and parameter values, 120
Macros\Pro on-line, 1
OmTalk routines described, 43, 81

i
Invoke keyword, 118

k
keywords

adding to commands, 117
Auto, 118
described, 117
Invoke, 118
Polling, 119
Result, 119
Shift, 118
using Invoke keyword, 125

l
loading files at run time, 44, 82

m
macros

adding to menus, 33
adding to toolbars, 36

Macros\Pro
components of, 1
using with Visual Basic, 2

menus
adding macros to, 33

o
OMNIC

adding macros to menus, 33
assigning macros to toolbars, 36
extracting spectra into Visual Basic arrays, 47, 84
receiving commands from OmTalk routines, 46, 83
retrieving parameters, 46, 83, 127
setting parameters, 46, 83, 127
sizing window on startup, 46, 83

stopping from within Visual Basic projects, 46, 83
transferring data into spectral windows, 47, 84

OMNIC commands
command and parameter syntax rules, 127
command interface described, 125
enclosing filenames in quotation marks, 126
invisible Window, 126
spaces in arguments, 125
using Invoke keyword, 125

OMNIC DDE
categories of general features, 114
command buttons, 121
general buttons, 122
messages, 123
OMNIC DDE description, 113
syntax rules for DDE conversations, 150
typing commands and parameters into fields, 113
using commands and parameters with other
applications, 147
using QuantPad commands and parameters, 145

OmnicCom 1.0 Type Library
referencing, 5, 16

OmTalk
adding OMTALK.BAS files to projects, 15, 43, 44
adding OMTALK.FRM files to projects, 15, 43, 44
adding OMTALK32.VB files to projects, 25
command and parameter syntax rules, 127
described, 11, 43
error handling routines, 47, 84
interactions handled by routines, 46, 83
list of routines, 43
location of routines, 43
resuming Basic macro execution, 47
routines described in help, 43
troubleshooting, 45

OmTalk routines
described in help, 43

OMTALK.BAS
adding to a project, 15, 43, 44
using 16-bit version, 15

OMTALK.FRM
adding to a project, 15, 43, 44
using 16-bit version, 15

OmTalk.NET
described, 81
list of routines, 81
location of routines, 81

154 Thermo Nicolet

OmTalk.vb
adding to a project, 82

OMTALK32.VB
adding to a project, 25

on-line help for Macros\Pro, 1

p
parameter groups

described, 115
using the GSANAL parameter group, 145

parameters
accessing, 115
allowed values, 115
Bench and Collect for step-scan experiments, 130
illegal conditions for setting, 125
obtaining values with Result Array parameter, 128
retrieving with GetOMNIC, 46, 83, 127
setting with SetOMNIC, 46, 83, 127
syntax rules for DDE conversations, 150
the Group list box, 115
typing into OMNIC DDE fields, 113
using with other applications, 147

Polling keyword, 119
Pro macros

adding macros to OMNIC menus, 33
adding macros to OMNIC toolbars, 36
adding Pro macros to Basic macros, 21, 31, 40
appending command line arguments, 41
calling Pro macros from Basic macros, 47
creating executable files, 20, 31
creating with Visual Basic 6.0, 12
creating with Visual Basic.NET, 22
referencing the OmnicCom 1.0 Type Library, 16
referencing the OmTalk.NET 1.0 Type Library, 26
resuming Basic macro execution, 47
running macros, 21, 31
running macros from Windows, 21, 31
saving projects, 20, 29
testing projects, 20, 30

r
referencing

type libraries, 5
Result Array

obtaining numerical values, 128
Result Error

obtaining last result error, 128

Result keyword, 119
ResumeMacro

resuming Basic macro execution, 47

s
Send Command button, 119
Set Parameter button, 119
SetDataArray

replacing for 32-bit applications, 47
transferring data into spectral windows, 47, 84

SetOMNIC
enclosing strings in quotation marks, 127
setting OMNIC parameters, 46, 83, 127

SetSpecData
transferring data into spectral windows, 47, 84

Shift keyword, 118
spectra

extracting into Visual Basic arrays, 47, 84
step-scan experiments

Bench and Collect parameters for, 130
syntax

rules for commands and parameters, 127
rules for DDE conversations, 150

t
toolbars

adding macros to, 36
troubleshooting

adding OMTALK files to projects, 45
adding the Load OmTalk line, 45
OmTalk problems, 45

type libraries
adding to Visual Basic 6.0 projects, 6
adding to Visual Basic.NET projects, 8
referencing, 5
referencing in projects, 5

v
Visual Basic

command and parameter syntax rules, 127
extracting spectra into arrays, 47, 84
starting with Basic macros, 42
transferring data into spectral windows, 47, 84
using with Macros\Pro, 2
creating pro macros with Visual Basic 6.0, 12
creating pro macros with Visual Basic.NET, 22

Macros\Pro User’s Guide 155

	Introduction
	About Macros\Pro
	About this manual
	Referencing�type libraries
	Referencing type libraries�with Visual Basic 6.0
	Referencing type libraries�with Visual Basic.NET

	Creating Macros With Visual Basic
	Creating pro macros�with Visual Basic 6.0
	Creating pro macros�with Visual Basic.NET

	Using a Pro Macro in OMNIC
	Adding a macro to�an OMNIC menu
	Adding a macro to�the OMNIC toolbar
	Calling a Pro macro�from Macros\Basic
	Using Pro macros in�Macros\Basic loops

	Using the OmTalk Routines
	Adding OmTalk�to Visual Basic 6.0�projects
	Troubleshooting�when using OmTalk
	Types of�OmTalk routines
	OMNIC program�control routines
	Parameter�control routines
	Command�execution routines
	Error handling routines
	Basic macro�interaction routines
	Data array routines

	List of OmTalk�routines
	EndOMNIC
	ErrMsgBox
	ErrOMNIC
	ExecuteApp
	ExecuteOMNIC
	FindOMNICData
	GetApp
	GetArgStr
	GetDataArray
	GetItem
	GetMVVal
	GetOMNIC
	GetOMNICName
	GetOMNICVersion
	GetSpecCollectTime
	GetSpecData
	GetVal
	ItemCount
	Pop
	ResumeMacro
	SetApp
	SetDataArray
	SetMVVal
	SetOMNIC
	SetSpecData
	StartOMNIC
	Strip

	Using the OmTalk.NET Routines
	Adding OmTalk�to Visual Basic.NET�projects
	Types of�OmTalk.NET routines
	OMNIC program�control routines
	Parameter�control routines
	Command�execution routines
	Error�handling routines
	Data array routines

	List of�OmTalk.NET routines
	EndOMNIC
	ErrMsgBox
	ErrOMNIC
	ExecuteApp
	ExecuteOMNIC
	FindOMNICData
	GetApp
	GetItem
	GetMVVal
	GetOMNIC
	GetOMNICName
	GetOMNICVersion
	GetSpecCollectTime
	GetSpecData
	GetVal
	ItemCount
	LoadOmTalk
	Pop
	SetApp
	SetMVVal
	SetOMNIC
	SetSpecData
	StartOMNIC
	Strip
	UnloadOmTalk

	The OMNIC DDE Application
	General features
	Parameters (group,�parameter and value)
	Commands (commands�and keywords)
	Command buttons
	Other functions

	Messages

	OMNIC Commands and Parameters
	Syntax rules
	Bench and Collect�parameters for step-�scan experiments

	Macros\Pro Examples
	Visual Basic�example 1:�EASY1.VBP
	Visual Basic�example 2:�EASY2.VBP
	Visual Basic�example 3:�EASY3.VBP
	Visual Basic�example 4:�COMMAND.VBP
	Visual Basic�example 5:�CONTROL.VBP
	Visual Basic�example 6:�XYPEAK.VBP
	Visual Basic�example 7:�GetData.VBP
	Visual Basic�example 8:�LIBRARY.VBP
	Visual Basic�example 9:�RAMANLIB.VBP
	Visual Basic�example 10:�RATIO.VBP
	Visual Basic�example 11:�SST.VBP
	Visual Basic�example 12:�ZPDHOLD.VBP
	Using OMNIC�QuantPad™ DDE�commands and�parameters
	Accessing report�information

	Using Commands and Parameters With Other Applications
	Dynamic data exchange basics
	Syntax rules for�DDE conversations

	Index

		2006-03-21T13:56:35-0600
	Eric A. Shipley
	Establish authenticity. Created by Thermo Electron Corporation, Madison, WI, U.S.A.

